
A. SUPPLEMENTARY TABLES



Table A.1 - Regressions of current catch on monthly and annual
abundance measures for the species, market expenses, trip
frequencies, and demographic variables by zip code.

DEP VARIABLE: REDS

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MMREDS
AREDS
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC

0.55995251
0.36847595
-0.10965756

-0.000016971
0.000788784
0.005368462
0.85482835
0.75937497
0.65719318
-9.52181432
-0.18475126
-0.69407659
4.39061789
0.000012134

DEP VARIABLE: TROUT

PARAMETER
VARIABLE ESTIMATE

 INTERCEP
MMTROUT
ATROUT
MON
NSUTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM -

PFFFISH
HHLDINC

0.32098798
0.4602S04S
-0.10727163
0.000344210
0.000856360
0.008488526
-2.23625648
2.S0439916
-4.76702938
v10.5418O776
0.007S74193

PTEXNATV 1.61013946
4.43354471
0.000016170

STANDARD
ERROR

0.30007121
0.23700779
0.04224035

0.000118226
0.000874304
0,000797330
0.72060800
0.26831368
0.83394446
4.10336572
0.06936814
0.27218848
1.80245578

0.0000073043

STANDARD
ERROR

0.96852747
0.5518182S
0.086S9900

0.000391106
0.002804431
0.0025S5053
2.31717300
0.909684S9
2.65016291

13.22176053
0.22341404
0.92900808
5.80127597

0.00002341S

T FOR HO:
PARAMETER=0

1.866
1.555
-2.596
-0.144
0.902
6.733
1.186
2.830
0.788
-2.320
-2.663
-2.550
2.436
1.661

T FOR HO:
PARAMETER=0

0.331
0.834
-1.239
0.880
0.305
3.322
-0.965
2.7S3
-1.799
-0.797
0.034
1.733
0.764
0.691



Table A.1, continued

DEP VARIABLE: CROAK

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MMCROAK
ACROAK
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC

3.30401254
-1.23508097
0.08828395

-0.001526458
-0.006019254
-0.001736803
-3.96485185
-9.44617850
16.61375283
34.13699452
1.00645150
4.46549691

-26.83794821
-0.000175471

DEP VARIABLE: SAND

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MMSAND
ASAND
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENC
PVIETNAX

PTEXNATV
PFPFISH
HHLDINC

2.60203861
0.13525806
0.34725560

0.003049747
0.000772157
0.002321740
-6.69928574
-5.S5781967
8.36237511

-37.14203944
1.00236870
1.47548162

18.26459246
-0.000122238

STANDARD
ERROR

0.98231253
0.45744060
0.09482006

0.000391878
0.002894183
0.002636454
2.37842920
0.91612331
2.78349049

13.59965826
0.22970427
0.89550728
5.96099955

0.000024158

STANDARD
ERROR

1.27890185
0.62965032
0.12388076

0.000506331
0.003762673
0.003427697
3.10020622
1.15362653
3.52678402

17.67071748
0.29815854
1.15738S69
7.73754036

0.000031442

T FOR HO:
PARAMETER=0

3.364
-2.700
0.931
-3.895
-2.080
-0.659
-1.667

-10.311
5.969
2.510
4.382
4.987
-4.502
-7.263

T FOR HO:
PARAMETER=0

2.035
0.215
2.803
6.023
0.205
0.677
-2.161
-4.818
2.371
-2.102
3.362
1.275
2.361
-3.888



Table A.1, continued

DEP VARIABLE: BLACK

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MMBLACK
ABLACK
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENC
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC

-0.21504911
-0.03098885
0.02454022

-0.000098978
-0.000610036
0.000872498
-0.51376786
-0.88597982
2.70210744
-0.11057677
0.04845612
0.66908968
0.23180632

-.0000017218

DEP VARIABLE: SHEEP

PARAMETER
VARIABLE ESTIMATE

INTERCEP
HMSHEEP
ASHEEP
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENC
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC

0.06836968
0.12234247
-0.04147377
0.000139507
0.002547533
0.000655088
-0.22178639
0.06904953
-0.55274431
-2.34572452
0.02545117

-0.002006479
2.93979145

-.0000027911

STANDARD
ERROR

0.15372003
0.11983304
0.01586489

0.000060809
0.000452134
0.000411767
0.37191902
0.13901951
0.42860428
2.12731804
0.03601018
0.13901599
0.93050578

.00000377165

STANDARD
ERROR

0.21828737.
0.15810969
0.03175789

0.000087330
0.000636643
0.000579990
0.52319454
0.19867934
0.60979506
3.01854217
0.05043334
0.20671267
1.31880893

.00000531521

T FOR HO:
PARAMETER=0

-1.399
-0.259
1.547
-1.628
-1.349
2.119
-1.381
-6.373
6.304
-0.052
1.346
4.813
0.249
-0.457

T FOR HO:
PARAMETER=0

0.313
0.774
-1.306
1.597
4.002
1.129
-0.424
0.348
-0.906
-0.777
0.505
-0.010
2.229
-0.525



Table A.1, continued

DEP VARIABLE: FLOUND

PARAMETER STANDARD
VARIABLE ESTIMATE ERROR

INTERCEP
MMFLOUND
AFLOUND
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM

PTEXNATV
PFPPISH
HHLDINC

-0.01970803
-0.61281021
-0.15836960

-0.000077295
0.007868546
-0.000819604
1.13867584
-0.98520829
2.04588931
1.06771366
0.16953815
0.63002837
-1.23657S29
-.0000037847

0.32426667
0.20575268
0.03617201

0.000129670
0.000943887
0.000860134
0.78206752
0.30517406
0.91854214
4.44847267
0.07518352
0.30251588
1.94501820

.00000789691

T FOR HO:
PARAMETER=0

-0.061
-2.978
-4.378
-0.596
8.336
-0.953
1.456
-3.228
2.227
0.240
2.255
2.083
-0.636
-0.479



Table A.22 - Regressions of current catch on major bay and
monthly dummy variables

DEP VARIABLE: REDS

PARAMETER
VARIABLE ESTIMATE

STANDARD
ERROR

T FOR HO:
PARAMETER=0

INTERCEP 0.05034214 0.07581144 0.664

MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

0.09586074
0.47034606
0.41556795
0.19918153
0.19034190
0.39698000
0.87774944

0.16287253
0.09943735
0.12293509
0.08094287
0.07985535
0.09674908
0.08008518

0.589
4.730
3.380
2.461
2.384
4.103
10.960

0.447
0.457
2.497
4.630
4.746
2.599

MN5
MN6
MN8
MN9
MN10
MN11

0,04357481
0.04480128
0.20531995
0.38649084
0.39501347
0.26375298

0.09756501
0.09810146
0.08224176
0.08346977
0.08322912
0.10148514

DEP VARIABLE: TROUT

PARAMETER
VARIABLE ESTIMATE

STANDARD T FOR HO:
PARAMETER=0

INTERCEP 2.02945978 0.24217103 8.380

MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

-0.30959043
0.60509801
1.48200S34
-0.45785320
-0.23295552
1.81081777
0.77603162

0.52027779
0.31764131
0.39270218
0,25856281
0.25508884
0.30905394
0.25582300

-0.595
1.905
3.774
-1.771
-0.913
5.859
3.033

MN5
MN6
MN8
MN9
MN10
MN11

-0.19569724
-0.61720332
-0.37767862
-0.51615104
-0.43755749
-0.08592488

0.31166034
0.31337396
0.26271195
0.26663468
0.26586596
0.32418277

-0.628
-1.970
-1.438
-1.936
-1.646
-0.265



Table A.2, continued

DEP VARIABLE: CROAK

PARAMETER
ESTIMATE

STANDARD
ERROR

T FOR HO:
PARAMETER=0VARIABLE

INTERCEP 1.80420655 0.25440856 7.092

MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

0.15435967
-1.44501071
-0.96835590
-1.22670089
0.12211734
-0.80625121
-1.77502414

0.54656879
0.33369255
0.41254645
0,27162867
0.2679791S
0.32667124
0.26875041

0.282
-4.330
-2.347
-4.516
0.456
-2.483
-6.605

0.32760935
0.32920957
0,27S98747
0.28010843
0.27930087
0.34056457

-1.606
-1.594
4.730
1.960
0.885
-2.168

MN5
MN6
MN8
MN9
MN10
MN11

-0.52584969
-0.52478913
1.30543161
0.54887768
0.24721955
-0.73844884

DEP VARIABLE: SAND

PARAMETER
ESTIMATE

STANDARD
ERROR

T FOR HO:
PARAMETER=0VARIABLE

1.49360615 0.32742378 4.562INTERCEP

-2.497
-3.615
-2.371
-3.024
-4.551
-5.656
-5.421

Ml
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

-1.75665494
-1.55240358
-1.25885186
-1.05708742
-1.56950545
-2.36323791
-1.87517327

0.70343395
0.42946227
0.53094723
0.34958605
0.34488913
0.41785184
0.34588174

MN5
MN6
MN8
MN9
MN10
MN11

0.39706249
0.32002563
0.63333692
0.43997674
0.84778208
2.84404560

0.42137579
0.42369266
0.35519583
0.36049951
0.35946017
0.43830655

0.942
-0.75s
1.783
1.220
2.358
6.489



Table A.2, continued

DEP VARIABLE: BLACK

STANDARD
ERROR

T FOR HO:
PARAMETER=0

PARAMETER
ESTIMATEVARIABLE

0.03932264

0.08448036
0.05157716
0.06376521
0.04198426
0.04142017
0.05018278
0.04153938

0.05060600
0.05088425
0.04265798
0.04329494
0.04317011
0.05263933

INTERCEP 0.20731884 5.272

MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

-0.02152089
-0.12508682
-0.12285552
-0.15597693
-0.11956589
-0.13773178
-0.15204360

-0.255
-2.425
-1.927
-3.715
-2.887
-2.745
-3.660

MN5
MN6
MN8
MN9
MN10
MN11

-0.07209143
-0.04345460
-0.01226179
0.02200455
0.14766722
0,05904913

-1.425
-0.854
-0.287
0.508
3.421
1.122

DEP VARIABLE: SHEEP

PARAMETER
ESTIMATE

STANDARD
ERROR

T FOR HO:
PARAMETER=0VARIABLE

INTERCEP 0.12359373 0.05514031 2.241

-1.666MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

-0.19739614
-0.01479838
-0.06177563
-0.07825227
-0.14568843
-0.24692556
-0.15689291

0.11846289
0.07232426
0.08941499
0.05887258
0.05808159
0.07036899
0.05824875

-0.205
-0.691
-1.329
-2.508
-3.509
-2.693

MN5
MN6
MN8
MN9
MH10
MN11

0.05152056
-0.007780611
0.03604168

-0.004137654
0.05014380
0.47535803

0.07096245
0.07135262
0.05981731
0.06071048
0.06053545
0.07381370

0.726
-0.109
0.603
-0.068
0.828
6.440



Table A.2, continued

DEP VARIABLE: FLOUND

PARAMETER
VARIABLE ESTIMATE

INTERCEP 0.82159657

MJ1 -0.31496533
MJ3 -0.30390463
MJ4 -0.63615308
MJ5 -0.79315402
MJ6 -0.79126378
MJ7 -0.73886256
MJ8 -0.63S85291

MN5 0.06951967
MN6 0.13816270
MN8 0.15535632
MN9 0.05658948
MN10 0.23391866
MN11 0.78029069

STANDARD
ERROR

0.08199456

0.17615627
0.10754737
0.13296157
0.08754450
0.08636828
0.10463985
0.08661686

0.10552233
0.10610253
0.08894932
0.09027749
0.09001721
0.10976219

T FOR HO:
PARAMETER=0

10.020

-1.788
-2.826
-4.784
-9.060
-9.162
-7.061
-7.341

0.659
1.302
1.747
0.627
2.599
7.109



Table A.3 - Regressions of current catch on monthlv
abundance index-, demographic variables, and major bay
dummy variables

DEP VARIABLE:

VARIABLE
INTERCEP
MMREDS
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

DEP VARIABLE:

VARIABLE

INTERCEP
MMTROUT
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

REDS

PARAMETER
ESTIMATE

0.08249090
0.31460321

-0.000126631
0.000997362
0.005338593
0.40792992
0.94774237
-1.92730218
-6.30008634
-0.17926668
-0.35985526
4.06562241

0.000014557
0.22117083
0.41258319
0.29340746
0.11045001
0.14403815
0.36564235
0.80571613

TROUT

PARAMETER
ESTIMATE

0.32926072
0.72672191

0.000418306
0.001301984
0.009021724
-1.40101257
2.38954617
-6.87307423
-5.11369468
-0.08751728
1.51843888
1.66646879

0.000014731
-0.12522173
0.46603374
1.42956747
-0.73896336
-0.56608140
1.58614179
0.62707082

STANDARD
ERROR

0.30620085
0.24591373

0.000119475
0.000871506
0.000792004
0.72216553
0.29027646
0.94335117
4.13511627
0.06960719
0.28079594
1.79684467

.00000727471
0.16308096
0.10128207
0.11918553
0.08697339
0.08637686
0.09914413
0.09778452

STANDARD
ERROR

0.98058040
0.51692313

0.000383818
0.002790464
0.002535271
2.31274943
0.93836731
3.02935838

13.24493296
0.22300185
0.90477954
5.76057977

0.000023296
0.51372014
0.32238217
0.38169115
0.29216032
0.27586664
0.30245190
0.32306103

T FOR HO:
PARAMETER=0

0.269
1.279
-1.060
1.144
6.741
0.565
3.265

-2.043
-1.524
-2.575
-1.282
2.263
2.001
1.356
4.074
2.462
1.270
1.668
3.688
8.240

T FOR HO:
PARAMETER=0

0.336
1.406
1.090
0.467
3.558
-0.606
2.546
-2.269
-0.386
-0.392
1.678
0.289
0.632
-0.244
1.446
3.745
-2.529
-2.052
5.244
1.941



Table A.3. continued

DEP VARIABLE:

VARIABLE

INTERCEP
MMCROAK
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC
MJ1
MJ3
MJ4
MJ5
MJ6

MJ8

DEP VARIABLE:

VARIABLE

INTERCEP
MMSAND
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC

MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

CROAK

PARAMETER
ESTIMATE

2.66756373
-3.98638283

-0.001477013
-0.006107054
-0.001945570
-2.84572618

-10.44237560
21.96652769
42.50799742
0.88205153
4.60465670

-25.60229589
-0.000159420
-1.32428223
-1.26997939
-1.09222587
-0.23015884
2.96516199

MJ7 -0.10117965
-0.30969034

SAND

PARAMETER
ESTINATE

3.49528262
0.72768171

0.003208116
0.000111362
0.002300422
-6.18159589
-4.92447442
8.32102379

-43.08458320
0.98033470
1.59438668

20.77898656
-0.000125297

MJ1 -1.26918171
-1.80970744
-1.69999347
-0.93288233
-1.51242967
-1.47083745
-1.88560063

STANDARD
ERROR

1.00525808
0.40759600
0.000392887
0.002860786
0.002599357
2.37166305
0.96981335
3.12265143

13.57571203
0.22857272
0.92367915
5.90128326

0.000023899
0.52467711
0.32994369
0.39260972
0.28546340
0.32860335
0.31440281
0.32172324

STANDARD
ERROR

1.33092771
0.58049126

0.000516215
0.003769108
0.003424049
3.12377497
1.25551174
4.07928230
17.88205173
0.30113908
1.21376362
7.76855507

0.000031474
0.70113740
0.44122254
0.55660418
0.41761009
0.37264711
0.46585384
0.44713447

T FOR HO:
PARAMETER=0

2.654
-9.780
-3.759
-2.135
-0.748
-1.200

-10.767
7.035
3.131
3.859
4.985
-4.338
-6.671
-2.524
-3.849
-2.782
-0.806
9.024
-0.322
-0.963

T FOR HO:
PARAMETER=0

2.626
1.254
6.215
0.030
0.672
-1.979
-3.922
2.040
-2.409
3.255
1.314
2.675
-3.981
-1.810
-4.102
-3.054
-2.234
-4.059
-3.157
-4.217



Table A.3, continued

DEP VARIABLE: BUCK

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MMBLACK
MON
N S W T R I
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

-0.06527348
-0.03127245

-0.000069184
-0.000675180
0.000844350
-0.38407660
-0.81824332
2.86581250
-1.20317407
0.04742877
0.58276254
0.39924427

-.0000024413
-0.04210067
-0.12673404
-0.15692987
-0.11390689
-0.06697295
-0.10752456
-0.21494500

DEP VARIABLE: SHEEP

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MMSHEEP
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

0.18397633
0.19706534

0.000146931
0.002501075
0.000654810
-0.10899880
0.18634607
-0.98841053
-3.18386372
0.02463802
0.03107763
2.90768177

-.0000038586
-0.11879970
-0.08906114
-0.18881993
-0.11501370
-0.16932811
-0.21894058
-0.22701709

STANDARD
ERROR

0.15959629
0.12061281

0.000062054
0.000452805
0.000411388
0.37526227
“0.15091174
0.49012528
2.14842043
0.03617276
0.14602230
0.93388199

.00000378035
0.08343432
0.05401686
0.06429929
0.04643952
0.04542878
0.04999241
0.05137572

STANDARD
ERROR

0.22424085
0.16868340

0.000087682
0.000638205
0.000579796
0.52896178
0.21297531
0.69064803
3.02844868
0.05097815
0.20624852
1.32049588

.00000532886
0.11723539
0.07379417
0.09180317
0.06391136
0.06321095
0.06971473
0.08198620

T FOR HO:
PARAMETER=O

-0.409
-0.259
-1.115
-1.491
2.052
-1.023
-5.422
5.847
-0.560
1.311
3.991
0.428
-0.646
-0.505
-2.346
-2.441
-2.453
-1.474
-2.151
-4.184

T FOR HO:
PARAMETER=0

0.820
1.168
1.676
3.919
1.129
-0.206
0.875
-1.431
-1.051
0.483
0.151
2.202
-0.724
-1.013
-1.207
-2.057
-1.800
-2.679
-3.141
-2.769



Table A.3. continued

DEP VARIABLE: FLOUND

PAMMETER
VARIABLE ESTIMATE

INTERCEP
MMFLOUND
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC
MJl
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8

0.21204966
-0.49321815

-0.000066724
0.007551138
-0.000819620
1.36027395
-0.71324691
0.81296362
0.52069004
0.16554232
0.93747057
-0.37430053

-.0000050267
-0.35044016’
-0.43350722
-0.80589558
-0.65223380
-0.63117761
-0.55085946
-0.42631471

STANDARD
ERROR

0.33183132
0.21939866

0.000129246
0.000943757
0.000857429
0.78225188
0.31584173
1.02514679
4.47714546
0.07538672
0.30394040
1.9k690673

.00000787969
0.17397636
0.10925459
0.12901976
0.10370180
0.09957913
0.10597766
0.10855894

T FOR HO:
PARAMETER=0

0.639
-2.248
-0.516
8.001
-0.956
1.739
-2.258
0.793
0.116
2.196
3.084
-0.192
-0.638
-2.014
-3.968
,6.246
-6.290
-6.338
-5.198
-3.927



Table A.4a - Average “Annual” Actual Catch Rates by Sample Respondents
(for May-Nov 1987); by Major Bay System

M A J O R  AAREDS AATROUT AACROAK AASAND AABLACK AASHEEP AAFLOUND

1 0.35000
2 0.21942
3 0.70226
4 0.57912
5 0.42059
6 0.45898
7 0.62898
8 1.16386

1.44286
1.68155
2.34292
3.36027
1.29244
1.45691
3.56847
2.48221

1.63571
1.92039
0.46612
0.99663
0.75575
2.21288
1.31051
0.33708

0.75714
1.93689
0.19713
0.36364
1.05586
0.63344
0.15446
0.23034

0.214286
0.219417
0.117043
0.090909
0.062432
0.115265
0.057325
0.086142

0.064286
0.172816
0.119097
0.060606
0.118291
0.055036
0.007962
0.014045

0.785714
0.982524
0.603696
0.202020
0.205915
0.236760
0.340764
0.331461

Table A.4b - OLS Regressions of Actual Individual Catch Rates on
Average Rates for Sample Anglers (for each bay and month, MAxxxxxx,
and for each bay, AAxxxxxx)  ●

DEP VARIABLE: REDS

PARAMETER
VARIABLE ESTIMATE

INTERCEP -0.12266561
MAREDS 0.95085659
MREDS -0.05043007
MON -0.000092812
NSWTRIP 0.000923382
SITETRIP 0.005093002
PRETIRED 0.45725770
PSPANISH 0.72133204
PSPNOENG -1.2285452S
PVIETNAM -4.92451856

-0.18016933
PTEXNATV -0.34731022
PFFFISH 2.72013126
HHLDINC 0.000013987

STANDARD
ERROR

0.29823802
0.08092220
0.12278424

0.000115702
0.000857973
0.000781527
0.70551913
0.26179804
0.82771249
4.04183705
“0.06794174
0.26481849
1.76799000

.00000716232

T FOR HO:
PARAMETER=0

-0.411
11.750
-0.411
-0.802
1.076
6.517
0.648
2.755
-1.484
-1.218
-2.652
-1.312
1.539
1.953



Table A.4b, continued

DEP VARIABLE: TROUT

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MATROUT
AATROUT
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC

-1.36523478
0.98197610

0.006042790
0.000286035
0.001863515
0.008918273
-1.43720691
1.43940886
-3.82852658
-2.07403981
-0.07554478
1.53446304
-1.98870119
0.000010671

DEP VARIABLE: CROAK

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MACROAK
AACROAK
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
mIETNAM

PTEXNATV
PFFFISH
HHLDINC

1.81057461
0.83774972
0.11396771

-0.001215592
-0.005338101
-0.001572947
-1.90685717
-8.60976875
18.04502300
31.27438S50
0.82502684
3.72817129

-21.13769899
-0.000159098

STANDARD T FOR HO:
ERROR PARAMETER=0

0.9&998077
0.10033556
0.14070736

0,000370669
0.002757012
0.002511557
2.26629296
0.84354198
2.58495718

12.94627157
0.21864170
0.84795042
5.68333396

0.000023018

STANDARD
ERROR

0.97371072
0.06864557
0.13693499
0.000383033
0.002844955
0.002590113
2.34453169
0.88171963
2.73232498

13.34679054
0.22594926
0.87S67771
5.86344930

0.000023783

-1.437
9.787
0.043
0.772
0.676
3.551

-0.634
1.706
-1.481
-0.160
-0.346
1.810
-0.350
0.464

T FOR HO:
PARAMETER=0

1.859
12.204
0.832
-3.174
-1.876
-0.607
-0.813
-9.765
6.604
2.343
3.651
4.257
-3.605
-6.690



Table A.4b, continued

DEP VARIABLE: SAND

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MASAND
AASAND
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC

DEP VARIABLE:

VARIABLE

INTERCEP
MABLACK
AABLACK
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENC
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC

1.04106408
0.98233478
0.11303100

0.003017771
-0.001733434
0.000968215
-5.89965190
-4.58440729
7.47884232

-46.01016400
0.91626869
1.94350416

18.23397447
-0.000110765

BLACK

PARAMETER
ESTIMATE

-0.29092946
0.96665317
-0.09573732

-0.000071042
-0.000674880
0.000671392
-0.26273281
-0.61890961
2.06309845
-0.74833926
0.04133539
0.53988053
0.35225404

-5.35967E-07

STANDARD
ERROR

1.26437786
0.07436923
0.18715312

0.000497673
0.003701859
0.003369551
3.04239513
1.14376694
3.46885734

17.40831290
0.29301929
1.13489728
7.61793262

0.000030901

STANDARD
ERROR

0.15268688
0.09114036
0.2S278827

0.000060670
0.000447214
0.000407375
0.36938636
0.14299078
0.43075110
2.10625389
0.03551921
0.13864906
0.92028645

.00000374053

T FOR HO:
PARAMETER=0

0.823
13.209
0.604
6.064
-0.468
0.287
-1.939
-4.008
2.156

-2.643
3.127
1.712
2.394
-3.585

T FOR HO:
PARAMETER=0

-1.905
10.606
-0.379
-1.171
-1.509
1.648
-0.711
-4.328
4.790
-0.355
1.164
3.894
0.383
-0.143



Table A.4b, continued

DEP VARIABLE: SHEEP

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MAWEEP
AASHEEP
MON
NWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC

-0.09047019
0.99441736
0.04962667

0.000051587
0.002201864
0.000382545
0.05006948
0.01381854
-0.32208556
-3.32365172
0.04434566
0.04907053
2.55337512

-.0000014707

DEP VARIABLE: FLOUND

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MAFmJND
AAFLOUND
MON
NSWTRIP
SITETRIP
PRETIRRD
PSPANISH
PSPNORNG
PVIETNAM

PTEXNATV
PFFFISH

-0.61623401
0.97594742
-0.021S3132

-0.000030626
0.006652809
-0.001277307
1.44956602
-0.43520381
0.72106186
-1.86240792
0.09270761
0.70903598
-0.33088056

STANDARD
ERROR

0.20353089
0.03670434
0.31134446
0.000080557
0.000597400
0.000544200
0.49119093
0.18550590
0.55982006
2.82850803
0.04734667
0.18406197
1.22902375

.00000499508

STANDARD
ERROR

0.31048537
0.05182762
0.10986631

0.000124319
0.000914079
0.000831043
0.75447296
0.29352799
0.88677081
4.30327459
0.07250692
0.28266255
1.87895111

HHLDINC -4.07689E-07 .00000763403

T FOR HO:
PARAMETER=0

-0.445
27.093
0.159
0.640
3.686
0.703
0.102
0.074
-0.575
-1.175
0.937
0.267
2.078
-0.294

T FOR HO:
PARAMETER=0

-1.985
18.831
-0.196
-0.246
7.278
-1.537
1.921
-1.483
0.813
-0.433
1.279
2.508
-0.176
-0.053



Table A.4c - OLS Regressions of Actual Individual Catch Rates
on “Annual” Average Catch Rates (by bay system, AAxxxxxx)

DEP VARIABLE: REDS

PARAMETER
VARIABLE ESTIMATE

INTERCEP
AAREDS
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PURBAN
PTEXNATV
PFFFISH
HHLDINC

-0.17221294
0.88499989

-0.000142307
0.001071111
0.005384716
0.33591552
0.82939290
-1.50245838
-6.08247392
-0.17038106
-0.32388801
4.01044819

0.000014969

DEP VARIABLE: TROUT

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MTROUT
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC

-1.46919676
0.97625433

0.000416560
0.001431302
0.009029381
-1.53660877
2.05603824
-5.2198S591
-4.62037204
-0.07380018
1.39479051
1.56510528

0.00001598S

STANDARD
ERROR

0.30189259
0.09463395

0.000117054
0.000868480
0.000790784
0.71415935
0.26486900
0.83760654
4.09055782
0.06877599
0.26808275
1.78637790

.00000725031

STANDARD
ERROR

0.95805247
0.10071020

0.000373599
0.002780255
0.002533030
2.28566892
0.84838605
2.60313817

13.05445151
0.22051315
0.85508754
5.72027055

0.000023209

T FOR HO:
PARAMETER=0

-0.570
9.352
-1.216
1.233
6.809
0.470
3.131
-1.794
-1.487
-2.477
-1.208
2.245
2.065

T FOR HO:
PARAMETER-0

-1.534
9.694
1.115
0.515
3.565
-0.672
2.423
-2.005
-0.354
-0.335
1.631
0.274
0.689



Table A.4c, continued

DEP VARIABLE: CROAK

PARAMETER
VARIABLE ESTIMATE

INTERCEP
AACROAK
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC

2.28572714
0.91638532

-0.001416135
-0.006336075
-0.001620966
-2.73498544

-10.42514263
22.06274250
35.64921090
0.87878673
4.15492950

-26.48~57430
-0.000177231

DEP VARIABLE: SAND

PARAMETER
VARIABLE ESTIMATE

INTERCEP
MSAND
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
VIETNAM

PTEXNATV
PFFFISH
HHLDINC

1.41489731
1.08298286

0.003137767
0.000235592
0.002220311
-6.59692145
-4.84730866
7.61299788

-43.06236011
0.98954192
1.73664712

20.49016673
-0.000123535

STANDARD
ERROR

0.98589955
0.12171787

0.000387781
0.002881682
0.002624632
2.37478506
0.88066463
2.74857122

13.51980165
0.22891726
0.88664122
5.92496424

0.000024053

STANDARD
ERROR

1.28379481
0.17483291

0.000505358
0.003756601
0.003420799
3.08942598
1.16144683
3.52299589

17.67862787
0.29754040
1.15250486

7.73491401
0.000031368

T FOR HO:
PARAMETER-0

2.318
7.529
-3.652
-2.199
-0.618
-1.152

-11.838
8.027
2.637
3.839
4.686
-4.471
-7.368

T FOR HO:
PARAMETER=0

1.102
6.194
6.209
0.063
0.649
-2.135
-4.174
2.161
-2.436
3.326
1.507
2.649
-3.938



Table A.4c, continued

DEP VARIABLE: BLACK

PARAMETER
VARIABLE ESTIMATE

INTERCEP
AABLACK
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENC
PVIETNAM
PUR8AN
PTEXNATV
PFFFISH
HHLDINC

-0.26300398
0.84957965

-0.0000732,71
-0.000649917
0.000826483
-0.40638490
-0.70453147
2.21811495
-1.10922521
0.04450246
0.59054447
0.35238792

-.0000025102

DEP VARIABLE: SHEEP

PARAMETER
VARIABLE ESTIMATE

INTERCEP
AASHEEP
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENC
PVIETNAM

PTEXNATV
PFFFISH
HHLDINC

-0.03535211
1.14481671

0.000147038
0.002511729
0.000648276
-0.16218767
0.14164609
-0.72252764
-3.27210423
0.03013284
0.01242447
2.98360822

-.0000038444

STANDARD
ERROR

0.15420014
0.23893440

0.000061280
0.000451707
0.000411208
0.37285190
0.14419906
0.43483440
2.12716746
0.03587531
0.13996088
0.92954552

.00000377348

STANDARD
ERROR

0.21662870
0.32859181

0.000085663
0.000635759
0.000579156
0.52276013
0.19738974
0.59566819
3.01068062
0.05039299
0.19591140
1.30807122

.00000531597

T FOR HO:
PARAMETER=0

-1.706
3.556
-1.196
-1.439
2.010

-1.090
-4.886
5.101
-0.521
1.240
4.219
0.379
-0.665

T FOR HO:
PARAMETER=0

-0.163
3.484
1.716
3.951
1.119
-0.310
0.718
-1.213
-1.087
0.598
0.063
2.281
-0.723



Table A.4c, continued

DEP VARIABLE: FLOUND

PARAMETER STANDARD T FOR HO:
VARIABLE ESTIMATE ERROR   PARAMETER=0

INTERCEP
AAFLOUND
MON
NSWTRIP
SITETRIP
PRETIRED
PSPANISH
PSPNOENG
PVIETNAM
PUR8AN
PTEXNATV
PFFFISH
HHLDINC

-0.59237667
0.92591610

-0.000037291
0.007522444
-0.000864638
1.39301161
-0.65905648
1.15633766
-0.40499133
0.16577954
0.77931103
-0.12527303

-.0000051086

0.32028494
0.10075174

0.000128243
0.000941733
0.000856981
0.77828601
0.30254645
0.91445592
4.43841383
0.07468882
0.29156099
1.93823814

0.0000787083

-1.850
9.190
-0.291
7.988
-1.009
1.790
-2.178
1.265
-0.091
2.220
2.673
-0.065
-0.649



Table A.5 - Pretrip Motivation Questions: OLS Regressions

DEP VARIABLE: NOPEOPLE

F-TEST 0.943
OBS 603

VARIABLE

INTERCEP
TARGR
TARGT
TARGF
MJ1
MJ3
MJ4
M J 5
MJ6
MJ7
MJ8
MN5
MN6
MN8
MN9
MN10
MN11

PARAMETER
ESTIMATE

7.59185247
0.52836370
-0.34403082
0.47487337
0.64433020
0.84117457
0.23616653
0.34060028
0.27210277
0.27241992
0.46534192
-0.04077979
-0.04905820
-0.37063712
0.32841948
-0.19742662
-0.09581740
-0.01828012

DEP VARIABLE: NOPOLLUT

PTEST c 791
OBS 429

STANDARD
ERROR

0.44738621
0.24653310
0.24382515
0.47290029
0.41974765
0.46032060
0.44200330
0.46624780
0.50602718
0.54607083
0.41754746
0.38895224
0.34417911
0.35045962
0.39216770
0.36166775
0.44172970
0.21044572

PARAMETER STANDARD
VARIABLE ESTIMATE ERROR

INTERCEP
TARGR
TARGT
TARGF
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
M J 8
MN5
MN6
MN8
MN9
MN10
MN11

9.28862007
-0.06010503
0.02721384
-0.18077773
0.13636153
0.06243266
-0.18281956
-0.4024S959
-0.14210375
0.02401744
0.0802S961

-0.007657418
0.08823009
0.192079S7
0.25429200
-0.39582402
-0.28337536
0.10035740

0.32744825
0.19483745
0.18658810
0.37549661
0.30518053
0.36528564
0.27396226
0.35735465
0.33100665
0.32870964
0.27896454
0.31921439
0.32933579
0,25276985
0.27247807
0.27040307
0.32430722
0.19787569

T FOR HO:
PARAMETER=0

16.969
2.143
-1.411
1.004
1.535
1.827
0.534
0.731
0.538
0.499
1.114
-0.105
-0.143
-1.058
0.837
-0.546
-0.217
-0.087

T FOR HO:
PARAMETER=0

28.367
-0.308
0.146
-0.481
0.447
0.171
-0.667
-1.126
-0.429
0.073
0.288
-0.024
0.268
0.760
0.933
-1.464
-0.874
0.507



DEP VARIABLE: DOWHTWNT

F-TEST 1.385
OBS 503

PARAMETER
VARIABLE ESTIMATE

INTERCEP 7. 709937k8
TARGR -0.19641401
TARGT 0.10541805
TARGF 0.26082970
MJ1 0.80886667
MJ3 1.33626023
MJ4 0.77824468
MJ5 0.80050893
MJ6 0.48155068
MJ7 1,08142499
MJ8 0.89569917
MN5 0.50210737
MN6 0.09873351
MN8 0,60081590
MN9 -0.13628211
MN10 0.002551616
MN11 0.19458545
WKND 0.14459588

DEP VARIABLE: KEEPFISH

F-TEST
OBS

VARIABLE

INTERCEP
TARGR
TARGT
TARGF
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8
RiNs
MN6
MN8
MN9
MN10
MN11

2.619
536

PARAMETER
ESTIMATE

8.09163143
-0.63493893
-0.03000512
1.16005118
-0.67785857
-0.89785739
-0.21607825
-1.01361087
-1.04931986
-0.41688883
-0.25730722
-0.14119910
0.22085293
-0.63595454
1.45515992
0.1882657S
-0.67293081
0.21160550

STANDARD
ERROR

0.44125530
0.21523229
0.21296736
0.39672252
0.48840354
0.43315279
0.43810012
0.42618053
0.40874203
0.43207201
0.46663572
0.40968952
0.31592841
0.37690952
0.31189957
0.35379013
0.39803834
0.25298011

STANDARD
ERROR

0.39754566
0.28813687
0.28608262
0.51360011
0.48409302
0.42731459
0.51354355
0.52192311
0.49730779
0.45091149
0.45696247
0.54846485
0.39028515
0.36390967
0.48851570
0.36217584
0.44317159
0.26132905

T FOR HO:
PARAMETER=0

17.473
-0.913
0.495
0.657
1.656
3.085
1.776
1.878
1.178
2.503
2.005
1.226
0.313
1.594
-0.437
0.007
0.489
0.572

T FOR HO:
PARAMETER=0

20.354
-2.204
-0.105
2.259
-1.400
-2.101
-0.421
-1.942
-2.110
-0.925
-0.563
-0.257
0.566
-1.748
2.979
0.520
-1.518
0.810



DEP VARIABLE: OUIETIME

F-TEST 1.579
OBS 482

PARAMETER
VARIABLE ESTIMATE

INTERCEP 8.33047553
TARGR -0.14268653
TARGT -0,18754912
TARGF 0.03336624
M J 1 -0.73609622
MJ3 -0.70451833
MJ4 -0.56445054
MJ5 -1.14804492
MJ6 -1.34006483
M J 7 -0.29360849
MJ8 0.04573877
KN5 -0.81118400
MN6 -0.09321641
MN8 0.08157845
MN9 -0.10180406
MN10 0.22701246
MN11 -0.45980224

-0.0S979884

DEP VARIABLE: GOODWTHR

F - TEST
OBS

VARIABLE

INTERCEP
TARGR
TARGT
TARGF
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8
KN5
MN6
MN8
MN9
MN10
MN11
WKND

2.759
381

PARAMETER
ESTIMATE

7.09707233
-0.48646878
0.51229235
-1.49302896
0.40571747
1.09149043
0.72597107
0.48019072
1.23645655
-0.26498057”
0.22708658
-0.31701387
1.28035717
0.14411618
1.14428728
0.49489729
0.57428481
0.34439790

STANDARD
ERROR

0.58638878
0.29999957
0.30534004”
0.48896232
0.69983581
0.71501660
0.70372958
0.69315901
0.68904331
0.69167542
0.74465338
0.47981448
0.41382943
0.44580404
0.53428639
0.40778226
0.53274809
0.32476937

STANDARD
ERROR

0.43106770
0.32599391
0.33760558
0.49194356
0.49441812
0.56904719
0.44476911
0.58953742
0.46327764
0.44679878
0.46512018
0.38871104
0.60295514
0.46022680
0.46974240
0.43572265
0.45843956
0.25591639

T FOR HO:
PARAMETER=0

14.206
-0.476
-0.614
0.068
-1.052
-0.985
-0.802
-1”.656
-1.945
-0.424
0.061
-1.691
-0.225
0.183
-0.191
0.557
-0.863
-0.184

T FOR HO:
PARAMETER=0

16.464
-1.492
1.517
-3.035
0.821
1.918
1.632
0.815
2.669
-0.593
0.488
-0.816
2.123
0.313
2.436
1.136
1.253
1.346



DEP VARIABLE : FRNDFMLY

F-TEST 1.233
OBS 406

PARAMETER STANDARD T FOR HO:
VARIABLE ESTIMATE ERROR PARAMETER=0

INTERCEP
TARGR
TARGT
TARGF
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8
MN5
MN6
MN8
MN9
MN10
MN11

8.54110823
-0.59800573
0.15487751
0.46287229
0.20963175
0.66950705
0.25996020
0.46650183
0.60614119
-0.09825039
0,17366924
-1.35708719-
0.35442366
0.09749444
0.15200115
0.45811705
0.19319351
0.13095893

0.46254806
0.25565774
0.25328885
0.40689201
0.44760664
0.46462665
0.42541605
0.43289498
0.55775904
0.43264822
0.40604008
0.70293279
0.34017854
0.32599378
0.39173057
0.33971443
0.47315411
0.23814544

18.465
-2.339
0.611
1.138
0.468
1.441
0.611
1.078
1.087
-0.227
0.428
-1.931
1.042
0.299
0.388
1.349
0.408
0.550

DEP VARIABLE: ADVNEXCT

F-TEST 1.267
OBS 443

PARAMETER STANDARD T FOR HO:
VARIABLE ESTIMATE “ ERROR PARAMETER=0

INTERCEP
TARGR
TARGT
TARGF
MJ1
M J 3
MJ4
MJ5
MJ6
MJ7
MJ8
nN5
KN6
MN8
MN9
MN10 
MN11

7.25608143
0.23528665
-0.26195517
-0.14838342
0.03723037
-0.92314231
-0.0489124S
1.01363017
-0.83621541
0.03118484
0.49056525
-0.01289834
0.04472742
-0.34816497
-0.55696234
-0.20256002
0.49999921
0.44184453

0.61347890
0.31342257
0.30524996
0.47233401
0.54138594
0.71890424
0.51960706
0.56859825
0.60606846
0.49129926
0.53133745
0.53358967
0.49114189
0.46015875
0.54623163
0.52433722
0.52655699
0.26438608

11.828
0.751
-0.858
-0.314
0.069
-1.284
-0.094
1.783

-1.380
0.063
0.923
-0.024
0.091
-0.757
-1,020
-0.386
0.950
1.671



Table A.S, continued

DEP VARIABLE: PRERELX
 F-TEST 1.585
OBS 3722

PARAMETER
VARIABLE ESTIMATE

INTERCEP
TARGR
TARGT
TARGF
MJ1
MJ3
MJ4
MJ5
M J 6
MJ7
MJ8
MN5
MN6
MN8
MN9
MN10
MN11

8.78987067
-0.08702046
-0.02271869
-0.05306643

-0.009755689
-0.25145705
-0.36764056
0.03227412

0.008712145
0.05884559

-0.003183858
0.01144559
-0.02560113
0.13506010
0.01645299
0.12827553
0.08320163
-0.01423466

DEP VARIABLE: PRECAT
F - TEST 2.063
OBS 3722

VARIABLE

INTERCEP
TARGR
TARGT
TARGF
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8
BINS
HN6
MN8
MN9
MN10
MN11

PARAMETER
ESTIMATE

6.56236349
0.09004818
0.12237258
0.52153433
0.15331075
-0.17609374
0.17431650
0.15514299
0.S4007251
0.15005384
0.30449474
-0.10320669
-0.227S5882
0.04694627
-0,14802188
-0.10164869
0,05654611
0.11237509

STANDARD
ERROR

0.13274228
0.08311952
0.08253455
0.14142803
0.13606929
0.14111326
0.13622517
0.14489392
0.14303434
0.13821775
0.13112852
0.12708450
0.11183769
0.10587769
0.12161881
0.10739298
0.13371926
0.06462206

STANDARD
ERROR

0.17428059
0.10912966
0.10836163
0.18568432
0.17864870
0.18527106
0.17885337
0.19023478
0.18779330
0.18146947
0.17216185
0.16685235
0.14683444
0.13900941
0.15967631
0.14099887
0.17556329
0.08484389

T FOR HO:
PARAMETER=0O

66.218
-1.047
-0.275
-0.375
-0.072
-1.782
-2.699
0.223
0.061
0.426
-0,024
0.090
-0.229
1.276
0.135
1.194
0.622
-0.220

T FOR HO:
PARAMETER=0

37.654
0.825
1.129
2.809
0.858
-0.950
0.975
0.816
2.876
0.827
1.769.
-0.619
-1.550
0.338
-0.927
-0.721
0.322
1.324



Table A.66- For sample interviewed both before and after
fishing trip; demographic, geographic, and seasonal variables
and their effects on extent to which “unpolluted natural
surroundings are a motivation

DEP VARIABLE: NOPOLLUT
F-TEST 1.569
OBS 85

PARAMETER
VARIABLE ESTIMATE

INTERCEP
HHLDINC
PRETIRED
PTEXNATV
PSPNOENG
PVIETNA14

SITETRIP
NSWTRIP
MON
MJl
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8
MN5
MN6
MN8
MN9
MN10
MN11

19.31015380
-0.000493022
-42.07217646
-1.35518067
6.58063295
-109.12039
0.18671766
0.04004085
0.02132592

0.005535399
-4.17274793
-9.84498903
1.22590283
-2.43125737
4.13690974
-5.69727465

-15.01756379
9.44642008
4.20898200
8.30827846
4.44008039
0.94326577
11.91217331
2.07968018

for going-fishing.

STANDARD
ERROR

26.92078701
0.000514831
41.08032759
28.42559659
39,05040280
406.35400
5.03175573
0.01082416
0.10230115
0.01279516
8.7969222S
9.81685770
8.62253424
8.03930377
6.64660300
6.63558981
8.27448287
7.95520190
7.25488897
6.19106440
6.23858464
5.99986399
6.72034145
4.75885531

T FOR HO:
PARAMETER=0

0.717
-0.958
-1.024
-0.048
0.169
-0.269
0.037
3.699
0.208
0.433
-0.474
-1.003
0.142
-0.302
0.622
-0.859
-1.815
1.187
0.580
1.342
0.712
0.157
1.773
0.437



Table A.7 -
“Experience

Extent to which respondents were able to
Unpolluted Natural

DEP VARIABLE: NOPOLLUT

VARIABLE

INTERCEP
HHLDINC
PRETIRED
PTEXNATV
PSPNOENG
PVIETNAM
PURBAN
MJ1
MJ3
MJ4
MJ5
MJ6
MJ7
MJ8
MN3
MN6
MN8
MN9
MN10
MN11

PARAMETER
ESTIMATE

8.42190686
-0.000011214

1.58102890
-0.61188444
-1.28938826
19.42599903
0.08369006
-0.86422020
0.32246599
0.64005519
1.01771109
0.10662209
0.46076012
0.88094389
0.22148059
-0.69695574
-0.02393900
-0.18379131
-0.02430656
0.45402552
-0.16900558

Surroundings .“

STANDARD
ERROR

1.00903630
0.000022673
1.96850152
0.85289639
1.51495547

11.87295215
0.19819351
0.36986443
0.38965319
0.25369335
0.35532066
0.31278854
0.29608459
0.32441647
0.35923225
0.29829741
0.22370082
0.27529979
0.26243870
0.35517060
0,19266161

(n-858)

T FOR HO:
PARAMETER=0

8.346
-0.495
0.803
-0.717
-0.851
1.636
0.422
-2.337
0.828
2.523
2.864
0.341
1.556
2.715
0.617
-2.336
-0.107
-0.668
-0.093
1.278
-0.877



Table A.8 - OLS Regression of “Ability to Enjoy Unpolluted
Natural Surroundings” on Measured Water Quality Variables

DEP VARIABLE: NOPOLLUT
F-TEST 4.192
OBS 695

PARAMETER
VARIABLE ESTIMATE

INTERCEP 7.65156764
MTURB 0.000064889
MSAL 0.01185356
MDO -0.22131054
TRANSP 0.02299990
DISO 0.26350825
RESU 0.009595514
NH4 3.99552741
NITR -1.40780844
PHOS 0.14529883
CHLORA 0.009712722
LOSSIGN -0.01482662
CHROMB -0.003165001
LEADB -0.04634034

STANDARD
ERROR

1.88693837
0.01043748
0.01791982
0.13894215
0.01366888
0.10926245

0.007438127
3.69437706
1.18960581
1.41691553
0.02752364
0.02449996
0.01881366
0.01468208

T FOR HO:
PARAMETER=0

4.055
0.006
0.661
-1.593
1.683
2.412
1.290
1.082
-1.183
0.103
0.353
-0.605
-0.168
-3.156
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ABSTRACT

Contingent valuation (CVM) survey methods are now being used quite
widely to assess the economic value of non-market resources. However, the
implications of these surveys have sometimes met with a degree of skepticism.
Here, hypothetical CVM data are combined with travel cost data on actual
market behavior (exhibited by the same consumers) to internally validate the
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Combining Contingent Valuation and Travel Cost Data
for the Valuation of Non-market Goods

Economists have long been skeptical about the reliability of consumers’

stated intentions, as opposed to their actions in the marketplace. The notion

that “actions speak louder than words” underlies much of the criticism of

survey methods as a basis for demand forecasting. In some situations,

however, market demand activity cannot be directly observed. Surveys and

other indirect methods are the only glimpses of demand relationships we have.

In these circumstances, it is valuable to explore methods by which researchers

can combine survey responses and other available information to formulate the

best possible characterization of demand when actual market observations “in

the field” are unattainable.

For a wide variety of environmental resources and public

absence of markets makes it extremely difficult to establish a

goods, the

monetary value

for access to these commodities. Whenever A proposed change in policy affects

the quality or availability of these non-market goods, either explicit or

implicit cost-benefit analysis must be undertaken

decision process. For some time, economists have

alternative methods of eliciting or inferring the

market goods.

at some point in the

experimented with

social value of these non-

The familiar travel cost method (TCM) popularized by Clawson and Knetsch

(1966) has been widely applied in an extensive array of empirical studies.

This method interprets variation in travel costs to a particular site where a
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non-market good is consumed as equivalent to the effect of a per-trip entrance

fee to the same location. Subsequent research has provided numerous

extensions and qualifications to the original travel cost method.

A somewhat newer, competing approach to valuation involves directly

asking individual consumers of the non-market good about its value. A

hypothetical market scenario is described to each respondent and their

professed behavior under that scenario is recorded. To avoid the connotations

of hypotheticality, this has been dubbed the ‘contingent valuation method”

(m). Despite the potential for a variety of biases in poorly designed CVM

surveys (described in detail in surveys by Cummings, Brookshire, and Schulze,

1986, or Mitchell

realistic methods

are prohibitively

and Carson, 1988) there are still many situations where more

(such as market simulations or actual market experiments)

difficult, and where some of the other potential methods,

such as hedonic housing price models or hedonic wage models, are

inappropriate, In these cases,it has generally been conceded that CVM

surveys, when interpreted cautiously, can provide useful information about the

characteristics of demand for a good not presently priced and traded in a real

market. The CVM technique has also been widely applied.

Despite the semantic care in naming the CVM, the data it produces have

still been criticized as “hypothetical

Consequently, “external validation” of

received considerable attention in the

and TCM; others compare CVM with other

● nswers to hypothetical questions.”

empirical applications of CVM has

literature. Some of these compare CVM

valuation methods.

For example, Bishop and Heberlein (1979) and Bishop, Heberlein and Kealy

(1983) pit CVM estimates against TCM and the results of simulated market

experiments. They conclude that CVM mechanisms produce “meaningful--albeit

inaccurate--economic information.” CVM and TCM are also compared by Sellar,



Stoll and Chavas (1985), who conclude that the two

comparable estimates of consumer surplus, and that

3

methods do provide

whenever possible, both

methods should be used in future studies as a validity check on the results.

Schulze, d’Arge, and Brookshire (1981) determine that “all evidence

obtained to date suggests that the most readily applicable methodologies for

evaluating environmental quality--hedonic studies of property values or wages,

travel cost, and [CVM] survey techniques --all yield values well within one

order of magnitude in accuracy. Such information. . . is preferable to complete

ignorance.” Brookshire, Thayer, Schulze, and D’Arge (1982) compare CVM

estimates with a hedonic property value study. Regarding CVM, they conclude

that “[although better accuracy would be highly desirable, in many cases

where no other technique is available for valuing public goods, this level of

accuracy is certainly preferable to no information for the decision-making

process.”

Brookshire and Coursey (1987), on the other hand, compare hypothetical

non-market CVM responses with market-like elicitation processes (Vernon

Smith’s public good auction experiments in the laboratory and in the field).

Compared to CVM, the marketplace appears to be “a strong disciplinarian” in

terms of limiting the tendency for certain types of inconsistencies in

valuation responses.

In all these previous studies aimed at external validation of the values

for non-market goods produced by CVM, the alternative measures of value were

obtained either by indirect methods (the travel cost approach or hedonic wage

or rent functions) or by small simulated market experiments. The point

estimates of value produced by each technique are generated by completely

separate models which are sometimes even applied to completely separate
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samples of data. This makes rigorous statistical comparisons of the different

value estimates impossible.

The new joint models introduced in this paper also appeal to the

marketplace to “discipline” contingent valuation estimates, while at the same

time, the CVM information provides insights into the probable behavior of

respondents under conditions which are far removed from the current market

scenario. The innovation is that the validation occurs in the context of a

single joint

collect both

be estimated

model applied to a single sample of respondents. Since we

CVM and TCM information from each respondent, the joint model can

both with and without restrictions, allowing the consistency of

the CVM information

rigorous fashion. 1

The new joint

and TCM information

models described in

to be tested in

this paper will

a statistically

be appropriate for a

whole spectrum of non-market resource valuation taska wherever CVM or TCM have

been used separately before. For concreteness in this paper, however, we

concentrate on an empirical application concerning the non-market demand for

access to a recreational fishery. The U.S. Fish and Wildlife Service

estimates that economic activity associated with recreational fishing

generated $17.3 billion in 1980 and $28.1 billion in 1985, and there are at

least 60 million Americans who fish regularly (reported in Forbes, May 16,

1988, pp. 114-120). Recreational fisheries valuation has therefore attracted

considerable policy-making interest over the past few years .2 There are many

1 The conceptual framework for the econometric implementation is similar to
models of discrete/continuous choice employed by Hanemann (1984) and by Dubin
and McFadden (1984), but in the present case, the discrete choices are purely
hypothetical.

2 Among current related policy issues, for example, is the quantification of
the social costs of acid precipitation (which kills fish and decreases the
consumer surplus associated with recreational fishing). These costs are



5

theoretical examinations and empirical attempts at valuation extant.3 One

factor accounting for the proliferation of empirical analyses is the

availability of vast quantities of survey data collected regularly for

fisheries management purposes.

Section I of this paper develops the logic whereby a discrete-choice

direct utility function can be modified into an indirect utility difference

function (defined over fishing days and a composite of all other goods). Then

this function and the corresponding Marshallian demand function for fishing

access days can be modeled jointly. Section II describes a sample of CVM and

TCM data used to demonstrate this technique. Section III describes

alternative stochastic specifications. Section IV provides a general outline

of the types of results these models generate. Section V goes into detail

regarding the specific empirical results for a basic model and some useful

extensions.

I. THE JOINTNESS OF CONTINGENT VALUATION AND TRAVEL COST RESPONSES

A rigorous utility-theoretic tradition in the analysis of “discrete-

choice” CVM data was initiated by Hanemann (1984b), who elaborated

substantially upon earlier estimation procedures used by Bishop and Heberlein

(1979). The discrete choice (or “referendum”) format for CVM sumey questions

is often argued to be less subject to some of the usual CVM biases than are

other fromats. Rather than asking the respondent to place his own specific

generally considered to be one of the most substantial components of acid rain
damages.

3 To cite only a few of the more recent recreational fisheries studies:
McConnell, 1979, Anderson, 1980, Samples and Bishop, undated, McConnell and
Strand, 1981, Vaughn and Russell, 1982, Morey and Rowe, 1985, Rowe, Morey,
Ross, and Shaw, 1985, Samples and Bishop, 1985, Donnelly, Loomis, Sorg, and
Nelson, 1985, Morey and Shaw, 1986, Cameron and James, 1986, 1987, Thomson and
Huppert, 1987, Cameron 1988a, Cameron and Huppert, 1988, 1989, Agnello, 1988,
and McConnell and Norton, undated.
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dollar value on access to the resource,

and the respondent is asked to indicate

greater or less than this amount.

For the survey available for this

seems most easily interpreted as asking

cease to use the resource if the annual

Let Y be the respondent’s income, let q

a single threshold value is offered

whether his personal valuation is

study, the referendum CVM question

whether the respondent would entirely

access fee (“tax”) were equal to T.A

be the current number of trips per

year to the recreation site, and let M be the respondent’s typical travel

costs (i.e. market cost of access and incidental expenses on complementary

market goods associated with one trip).5

With cross-sectional data, it is convenient to begin by assuming a

common utility function wherein access to the recreational resource can be

traded off against a composite of all other goods and services, z, for which

the price can be normalized to unity.

consumed in fixed proportions with the

the number of trips appears separately

If market goods (travel, etc.) are

number of recreation trips, then only

in the utility function: U(z,q) - U(Y-

Mq,q).

Suppose a respondent

continue fishing under the

to the CVM question indicates that he would

hypothetical two-part tariff with fixed tax T and

marginal price M.

paying the tax and

This implies that his maximum attainable utility when

enjoying ● ccess exceeds his utility when forgoing all trips

4 A possible alternative interpretation of the question Is addressed in
Appendix I.

5 These data do not allow accurate imputation of the opportunity costs of
travel time. Rather than invoking a completely arbitrary guess about time
costs , we opt to ignore this component while acknowledging that the empirical
results will certainly reflect this decision. To the extent that time costs
are important, the social values of access implied by the travel cost portion
of the model will be underestimated.
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and thereby avoiding both the tax and the travel costs associated with each

trip:

(1) AU(Y,M,T) - maxq U(Y-Mq-T,q) - U(Y,0) > 0, or

AV(Y,M,T) - V(Y-T,M) - v(Y) > 0,

where U signifies the direct utility function and V the corresponding indirect

utility. Crucially, as pointed out by McConnell (1988), the optimal quantity

demanded in the first term of the direct utility formulation in (1) would be

endogenously determined and is presently unobserved.

The TCM question, however, concerns the respondent’s optimal quantity

demanded under existing conditions. If the utility surface implied by the

discrete-choice CVM response truly describes the configuration of individuals’

preferences, then it should also be consistent with the current observed

behavior, namely demand for access days in an environment where per-day

specific access prices (beyond M) are currently zero.6 The Marshallian demand

function, q(Y,M), corresponding to the same utility function will be given by

the maximization of the Lagrangian:

(2) maxq u(Y-Mq,q) s. t. Y = z + Mq.

Theoretically, the utility maximizing decisions of economic agents,

whether real or hypothetical, should reflect the same underlying structure of

preferences. Conditional on the extent to which the functional form chosen

6 Except for the hypothetical nature of the discrete choice question in the
contingent valuation context, the models used in this paper have much in
common with the strategies employed in King (1980) and in Venti and Wise
(1984), where consumer choices are modeled explicitly as the result of utility
maximization. In contrast, earlier empirical discrete choice/demand models
accommodated the choice process in a “reduced form” manner similar to the
approaches used in the literature on switching regressions or sample
selection.
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for U(z,q) is an adequate representation of the preferences of individuals in

this sample, this supposition will be used to impose parameter constraints

across the two parts of the model. Requiring that respondents’ professed

behavior in a hypothetical context be consistent with their observed behavior

in real markets should attenuate the degree of bias due to the hypothetical

nature of the CVM question. In turn, the CVM information allows the

researcher to “fill in” some information about demand that iS not captured

the range of the currently observable demand data and it can temper biases

the travel cost information due to underestimation of the true opportunity

costs of access.

by

in

One key question to be addressed in this study is whether CVM and TCM

data do indeed elicit the same preferences. When parameter constraints are

imposed across two models, it is also possible to allow the corresponding

parameters to differ, taking on any values the data

allows for a rigorous statistical comparison of the

configurations implied by the CVH and the TCM data.

suggest. This option

different utility

Contingent on the

validity of the assumption of quadratic utility,

the hypothesis that the corresponding parameters

one can test statistically

in the two models are the

same.  This is implicitly a test of whether professed behavior in the

hypothetical market is consistent with observed behavior in a real market. If

utility parameter equivalence is rejected, then one might suspect that the

contingent valuation technique and/or the travel cost method might be

unreliable in this specific application.

Travel cost models seem to enjoy broader acceptance than CVM models,
,

although rudimentary travel cost models like the one employed here can also

have serious deficiencies. Fortunately, if the researcher harbors prior

opinions regarding the relative or absolute reliability of these two types of
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information, these priors can be readily incorporated into the estimation 

process. Consequently, even if parameter equivalence is rejected initially,

there will be some recourse.

In addition to these basic issues, this paper describes a number of

extensions

subsequent

which demonstrate the flexibility of this model as a prototype for

work in non-market resource valuation.

II. AN ILLUSTRATIVE EXAMPLE

Between May and November of 1987, the Coastal Fisheries Branch of the

Texas Department of Parks and Wildlife conducted a major in-person survey of

recreational fishermen from the Mexico border to the Louisiana stat. line.

The “socioeconomic” portion of the survey is most pertinent here. The

specific CVM question asked of respondents was: “If the total cost of all

your saltwater fishing last year was more, would you have quit fishing

completely?” At the start of each survey day, interviewers randomly chose a

starting value from the list $50, $100, $200, $400, $600, $800, $1000, $1500,

$2000, $5000, and $20,000. On each subsequent interview, the next value in

the sequence was used. Therefore, offered values can be presumed to have no

correlation whatsoever with the characteristics of any respondent. In

addition to this question, respondents were asked “How much will you spend on

this fishing trip from when you left home until you get home?” The survey

also established how many trips the respondent made over the last year to all

saltwater sites in Texas.’ Five digit zip codes were collected, which allows

establishment of residency in Texas.

7 Unfortunately, the duration of each trip is unknown, so it must be assumed
that the majority are one-day trips, which may or may not be entirely
plausible. Here, the term “trip” is used synonymously with “fishing day.”
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Income data were not collected from each respondent, but the five-digit

zip codes allow merging of the data with 1980 Census median household incomes

for each zip code. Zip codes cover relatively homogeneous “neighborhoods,” at

least when compared to income data on the county level, for example.

Individuals’ consumption patterns tend to conform somewhat to those of their

neighbors, so median zip code income may be a better proxy for “permanent”

disposable income than actual current self-reported income. There is high

variance in median incomes across zip codes, so the Census income variable may

actually make a substantial and accurate contribution to controlling for

income heterogeneity among the survey respondents.8

In other work utilizing the entire dataset (Cameron, Clark, and Stoll,

1988) it has been determined that subsets of individuals in the sample exhibit

extreme behavior. The full sample has therefore been filtered somewhat for

use in this demonstration study. Since the initial models presume identical

underlying utility functions for all individuals, those who report more than

sixty fishing trips per year are discarded from the sample. It is relatively

likely that these individuals are atypical, since 90% of usable sample reports

fewer than this number of days. The median number of trips reported is

between eleven and twelve. This research is therefore clearly directed at

“typical” anglers.

It is also the case in the full usable sample

individuals respond that they would keep fishing if

from the survey that some

the cost had been $20,000

higher when $20,000 exceeds the median household income of their zip code.

8 While the use of group averages instead of individual income information
undeniably involves errors-in-variables complications in the estimation
process, the distortions may in fact be not much greater than they would be
with the use of self-reported income data in an unofficial context. It is
well known that many individuals have strong incentives to misrepresent their
incomes if they do not perceive a legal requirement to state them correctly.
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Since the assignment of value thresholds was completely exogenous, the

estimating sample includes only those respondents who were posed values up to

and including the $2000 offer. Everyone offered values greater than this was

excluded, regardless of their answer to the CVM question.

The final criterion for inclusion in the sample for this study was that

a respondent should not report spending more than $100 on this fishing trip.

Again, a very large proportion of the sample passes this criterion. When

market expenditures are reported to be much larger than this, it seems

reasonable to suspect that capital items have been included, so that it would

be invalid to treat these costs as “typical” for a single fishing trip.

Current expenditures over $2000 were reported by several respondents.

Descriptive statistics for the variables used in this paper are

contained in Table I.

III. THE STOCHASTIC SPECIFICATION

It may be helpful to think of the model developed in the following

sections as a nonlinear analog to a more familiar econometric model. The

conceptual framework is similar to a system of two equations with one right-

hand side endogenous variable, cross-equation parameter restrictions, and a

non-diagonal error covariance matrix. However, one of the dependent variables

is continuous and one is discrete, both equations are highly nonlinear in

parameters, and the simultaneity in the model involves an endogenous variable

which is not observed directly, but must be counterfactually simulated.

In order to have the option of constraining the coefficients of the

utility function (and hence the indirect utility function) as well as those of

the corresponding Marshallian demand function to be identical, the discrete

choice model and the demand equation must be estimated simultaneously. To fix



Table I

Descriptive Statistics for the Variables
(n - 3366)

Acronym Description Mean Std. dev.

Y median household income for respondent’s
S-digit zip code (in $10,000)” (1980 Census
scaled to reflect 1987 income; factor=1.699)

M current trip market expenditures, assumed
to be average for all trips (in $10,000)

T annual lump sum tax proposed in CVM scenario
(in $10,000)

~ reported total number of salt water fishing
trips to sites in Texas over the last year

I indicator variable indicating that respondent
would choose to keep fishing, despite tax T

PVIET proportion of population in respondent’s
5-digit zip code claiming Vietnamese ancestry

3.1725

0.002915

0.05602

17.40

0.8066

0.002497

0.6712

0.002573

0.04579

16.12

0.3950

0.006217

a Dollar-denominated quantities l re expressed in $10,000 units throughout
the study, so that squared income and squared net income do not become
too large, resulting in extremely small probit coefficient estimates
which thwart the optimization algorithm.
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ideas , it is helpful to begin by considering the two components of the joint

model completely separately, ignoring

A. A Separate

The decision to work within the

indirect, utility functions buys easy

any potential error correlation.

CVM Choice Model

framework of direct, rather than

characterization of the shapes of

consumer indifference curves. Under the hypothetical CVM scenario, the

respondent is asked to choose between ceasing to use the resource and paying

no lump-sum tax, or continuing to consume a revised optimal quantity of access

q(y-T,M) at a new lower net income. Unless one can assume that there is no

income effect, q(Y-T,M) will probably be less than the current optimal

quantity, q(Y,M). But if, for the initial exposition, it is temporarily

assumed that the income elasticity of demand for access is zero, one can begin

by considering how the CVM component of the joint model should be estimated.

It will be convenient to model the discrete choice elicited by the CUM

question using conventional maximum likelihood probit (rather than logit)

techniques, where the underlying distribution of the implicit dependent

variable, the true utility difference, is presumed to be Normal. Since

AU(Y,M,T) in equation (1) can at best be only an approximation, assume that

for the ith observation AUi - AUi* + c~, where Ci is ● random error term

distributed N(O, U2). AUt*, the systematic portion of the utility difference

on the right hand side of equation (1) will be represented in what follows as

f(xi,B).

In conventional probit

(i.e. AUi > 0), one observes

response), taking on a value

value zero. In constructing

models, AU~ is unobserved, but if AUi is “large”

an indicator variable, Ii (the “yes/no”

of one. Otherwise, this indicator takes the

the likelihood function for this discrete

response variable, the following algebra is required:
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(3) Pr( Ii - 1 ) -Pr(AUi>O)-Pr(c~>- f(xi, /?)).

Since Ci has standard error u, dividing through by a will create

normal random variable, Z, with cumulative density function @.

(4) Pr( Ci > - x~’~ ) - Pr ( Z > - f(xi,~)/a )

a standard

- Pr ( Z < f(xi,@)/a )

- @ (f(xi,~)/u),

by the symmetry of the standard normal distribution.

At best, in cases where f(xi,e) is linear-in-parameters, the vector p

can only be identified up to a scale factor, since it only ever appears in

ratio to u. (However, this is quite acceptable, because the solutions to the

consumer’s utility maximization problem are invariant to monotonic

transformations of the utility function.) The probability of observing Ii - 0

is just the complement of

likelihood function for n

(5) log L - xi Ii log

Pr(Ii - 1), namely 1 - 4 (f(xi,~)/a), so the log-

observations will be:

[@ (f(x~,fl)/a)] + (1 - Ii) log

If f(x~,~) was linear in ~, and if q(Y-T,M) could

( 1 -[* (f(xi,p)/a)l }

be observed or assumed

to be equal to q(Y,M), this separate discrete choice model could readily be

estimated by any number of maximum likelihood routines in packaged statistical

programs (such u SAS or SHAZAM). For compatibility with what follows,

however, when q(Y-T,H) is made endogenous, this application requires a general

MLE algorithm. (In this paper, the GQOPT nonlinear function optimization

package is used). The endogenous demands, q(Y-T,M) will be functions of the

same parameters appearing in (5). When the formulas for these demands are

substituted into f(xi,~), these functions will usually no longer be linear

functions of the # parameters.



B. A Separate Demand Model

The systematic portion of the TCM Marshallian demand function resulting

from the optimization problem in (2) will be denoted by g(x~,~). In

estimating this model separately, one might assume that qi - g(x~,p) + vi,

where q, N(O, U2). This suggests that nonlinear least squares (by maximum

likelihood) is an appropriate estimation method.

The log-likelihood function associated with the demand model is

therefore:

(6) log L- -(n/2)log(2m) - n log u - (1/2) Z~( [q~ - g(xi,@)]/u)2

Again, there exist packaged computational routines to estimate such

nonlinear models, but this application requires a general function

optimization program to allow for subsequent constrained joint estimation of

this model and the utility difference model.

C. Constrained Joint Estimates, Independent Errors

To impose the requirement that the two decisions (one real and one

hypothetical) reflect the identical underlying utility function, the CVM and

TCM models must be estimated simultaneously. With independent errors, it is

simple to combine the two specifications by summing the

likelihood functions and constraining the corresponding

each component to be the same:

two separate log-

f?j coefficients in

(7) log L = -(n/2)log(2x) - n log v - (1/2) Xi ( [qi - g(xi,~)]/u)2

+ Xi ( Ii log [4 (f(xL,~)/u)] + (1 - Ii) log ( 1 -[* (f(xi,#O/~)l ) ).

D. Constrained Joint Estimates, Correlated Errors

Realistically, unobservable factors which affect respondents’ answers to

the CVM discrete choice question are simultaneously likely to affect their
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actual number of fishing days demanded. To accommodate the influence of

unmeasured variables, one can allow for a correlation, p, between the Ci error

terms in the discrete choice model and the Vi error terms in the demand

model. g Assume that these errors have a bivariate normal distribution,

BVN(O, O, U2, U2, P).

In empirical discrete/continuous choice models, it is frequently more

convenient not to work directly with the joint distribution of the errors.

Instead, one can take advantage of the fact that the joint density can be

represented equivalently as the product of a conditional density and a

marginal density. In order to derive the model with nonzero p, one can

exploit the fact that for a pair of standardized normal random variables, say

W1 and W2, the conditional distribution of W2, given W1I - w1, is univariate

Normal with mean (p w1) and variance (1 - P*)..

When allowing for nonzero values of P, then, the term @(f(xi,@)/a) in

the discrete-choice portion of equation (7) will be replaced by:

(8) @ ( [(f(x~,#)/a) + P Zi] / (1 - P2)l’2 )

where Zi - [qi - g(x~,@)]/v, the standardized fitted error in the demand

function, evaluated at the current parameter values. Clearly, if P - 0, this

model collapses to the model with independent errors described in the previous

section. 

IV. AN EXPLICIT FUNCTIONAL FORM AND CLASSES OF RESULTS

The basic model proposed in this paper (and its variants) uses a

quadratic direct utility specification for U(z,q). Other discrete/continuous

9 If the estimated value of the error correlation, p, is substantial and
statistically significant, one probably ought to generalize the specification,
if possible, to accommodate systematic heterogeneity across respondents.
Section V will address this issue.



modeling exercises have begun with an indirect utility function, since

commodity

exogenous

desire to

prices (rather than quantities) are more plausibly assumed to
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be

for the typical consumer. In the present context, however, we

maintain the geometric intuition behind direct utility functions and

their associated indifference tunes.l” We have selected the quadratic form

for the direct utility function because of its simplicity and because a number

of other familiar specifications are unsuitable for the derivation of

associated Marshallian demand functions (also discussed in Appendix II).

For identical consumers, the simplest quadratic direct utility

specification is:

(9) U(z,q) -~1 z +p2 q +p3 z2/2 +B, zq +p5 q2/2

Under the current scenario for the respondent, consumption of the Hicksian

composite good z is (Y - Mq) and q will be non-zero for anyone being

interviewed, so the utility function in (9) is really a function of Y and q.11

(9a) u(Y,q) -fil (Y-Mq) +62 q +Ba (Y-Mq)2/2 +fl, (y-Mq)q+~5 q2/2.

The specific form of the utility difference which dictates a respondent’s

answer to the CVM question will be linear in the same parameters as U:

(10) AU(Y,H,T) - f(xi,~) =

+ 83 ([Y-Mq-T]2

81 ([Y-Mq-T] - Y) +132q

- Y2)/2 +/94 [Y-Mq-T]q + 133 (q)2/2.

10 A quadratic indirect utility version of the model is discussed in Appendix
II. Unfortunately, the calibrated model does not satisfy the regularity
conditions for valid indirect utility functions.

11 In-person CVM surveys typically sample only current users of the resource.
When access price increases (or simply positive access prices) are being
contemplated, this does not pose much of a problem. However, when projected
scenarios involved improved resource attributes, one must really survey
potential users as well as current users to elicit an accurate measure of
aggregate demand responsiveness.



The first order conditions for the Lagrangian

corresponding Marshallian demand for q of:

(11) q(Y,M) - g(xi,e) -[f12+/3,Y-@lM-f13

[ 294 (M) - J?, M2 -
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in equation (2) yield a 

Y (M) ] /

~~1.

Since every additive term in both the numerator and denominator of this

expression contains a multiplicative b coefficient, the demand function is of

course invariant to the scale of the ~ vector. Consequently, it is necessary

to adopt some normalization of the demand function parameters (for example,

b~ = 1, an entirely arbitrary and inconsequential choice). Thus the form of

the demand function actually estimated will be:

(12) q(Y,M) - [ 1 + (94*) Y - (L91*) (M) - (93*) Y (M) 1 /

[ 2(0,*)04) - (~3*) (M)2 . #5* ] .

where L9J* - ~j/~2. This demand function is highly non-linear in M.

Crucially, when we endogenize the q in equation (10) by substituting the

formulas for q(Y-T,M) based on the calibrated demand models in (11) or (12),

we are effectively converting the direct utility specification into an

indirect utility specification! But if the indirect utility function V(Y-T,M)

- U(Y-T,q(Y-T,M)) were to be written out in full, it would be a complex and

unappealing formula. Instead, we will describe our results in terms of the

implied direct utility function U(z,q).

The central empirical results in this study ● re the estimates of the B

parameters of the assumed underlying quadratic direct utility function. All

of the economically interesting empirical measurements in this paper are

derived from this calibrated utility function. Throughout, the empirical
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intuition about plausible shapes for these
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which are consistent with economic

functions.

First,

(13)

The marginal

the derivatives of the underlying direct utility function are:

N1/az - PI + B3Z + 134q a%/az2 - &

au/aq - p2 + p,z + p5q a2u/aq2 - p~

a%/azaq - p,

utilities of the composite good z and of access days q will

depend on the local values of z and q. Whether or not each marginal utility

is increasing or decreasing will be revealed by the signs of B3 and @5.

If both B3 and P3 are negative, the fitted utility function will be

globally concave, and a globally optimal combination of z and q will be

implied. The budget constraint will be binding unless the implied global

optimum is attainable inside the budget set. The formulas for the global

optimum will be strictly in terms of the estimated coefficients:

(14) mull
q = [-p2 + (fll fi4/p3) ] / [p, - (p42/p3) ]

zmax U = (-PI - 194q*)/193

Admissible fitted quadratic utility functions are not necessarily

strictly concave, however. The bundle at which both marginal utilities go to

zero may correspond to a saddle point of the complete fitted utility function.

But only quasi-convexity in the positive orthant is required. To assess

compliance with this regularity condition, one can easily examine the

configuration of the fitted utility function’s indifference curves.

An indifference curve through any arbitrarily chosen bundle (z’,q’) can

be identified by first determining the level of utility this bundle

represents:
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(15) u’ - ~1 z’ +P2q’+P3z ‘2/2 + /36 Z’q’ + p5 q’2/2.

To find all other bundles (z,q) which provide utility U’, one merely sets up

the quadratic formula for z:

(16) (B3/2)z2+ (Pl +#,q)z + [@ + (L95/2)q2 - u’] - 0

Plots of empirical indifference curves are highly intuitive and relatively

novel and will be used throughout the discussion to highlight the differences

in estimated preference structures.

Once the corresponding Marshallian demand function has been calibrated

by joint estimation of the utility parameters, we are usually curious about

the implied price and income derivatives:

(17) dq/dM- [ -(29,M-B3M2-fl~)(5t+fJ3Y) - 2(82+$,Y-#lH-~3~)(#4-@3M)  ] /

[V4~-B3~2-@512

way- [L94-J33MI / [2p4M-B3M2-5512 .

From the demand curves, policy makers are also sometimes interested in

estimates of the resonation price. One simply sets q - 0 in equation (11)

and solves the resulting quadratic

of M, the reservation level of any

can readily be determined.

formula for (M). Given the current level

additional potential per-day access charge

One of the ultimate empirical objectives of this research concerns

estimation of the total social value of recreational access to this fishery.

One measure of value is the equivalent variation,

the fixed tax which would make these anglers just

the tax and continuing to fish, or not paying the

E, which can be viewed as

indifferent between paying

tax and forgoing their
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fishing opportunities. Algebraically, E is given by the equation maxq U(Y-Mq-

E,q) - :(Y,O).

But completely depriving everyone of access to the resource is an

extremely drastic proposition. So we also consider the equivalent variation

formulas that give the social costs of limiting access to a proportion a of

current (fitted) access levels, where O < a < 1 . The equivalent variation

for such partial restrictions is given by maxq U(Y-Mq-E,q) - U(Y-oMq,aq).

Letting D - (2@4M - ~3M2 - ~~), R - (~2+~,Y-~lM-@#Y)/D

value of E is the solution of the quadratic formula:

(18) 0 - [ (P3/2)(m-1)2 - #,s(Ms-1) + (95/2)s2 ] E2

and S - (~4-@3M)/D, the

+ [ P1(MS-l) - @2S+53(Y-HR)(MS-1)  +~,(R(MS-l) - (Y-MR)S) - ~3RS ] E

+ [ - @l(l-a)MR +p2(l-a)R+ (j?3/2){(Y-MR)2  - (Y-aMR)2)

+ /9,((Y-MR)R - (y-aMR)(aR)) + (f15/2)(1- a2)R2 ].

When a-0, the formula produces the equivalent variation for a complete loss of

access. While it would be desirable to compute Taylor’s series approximations

to the standard errors of the value of E computed from the estimated p

parameters, this would clearly be a daunting task.

An alternative measure of value (the compensating variation, C) asks

what amount of money would have to be given to a respondent who has been

denied some or all of his

before the intervention.

U(Y+C,0). For a complete

formula:

(19) 0- -(p3/2) C2 -

access in order to leave him equally well off as

Algebraically, this C is given by maxq U(Y-Hq,q)

loss of access, C is the root of the quadratic

-9+4 +BJl + (4/2)[ (Y-Mq)2 - Y2] + l?,(Y-1’lq)q + (/?/2)q%
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A general formula for partial loss of access could easily be devised, but this

paper will ‘focus on the equivalent variations.

V. SPECIFIC EMPIRICAL ESTIMATES

A. The Basic Model

The “basic model” constrains the quadratic direct utility parameters and

the corresponding parameters in the Marshallian demand function for fishing

days to be identical. The model initially assumes equal reliability of the

two types of

tax quantity

endogenously

information (CVM and actual market demand), and allows the post-

demanded in the discrete choice model to be determined

according to the same demand function. The model also allows for

correlated errors in the two decisions. The pair of columns in Table II

give these results (the second pair of columns will be discussed later). Both

the estimated quadratic direct utility function parameters and the

corresponding implied (normalized) Marshallian demand parameters ● re provided.

The utility function implied by these parameter estimates is globally

concave, with a slightly positively sloped principal axes for the ellipses

that form its level tunes. (The relevant lower left portions of these curves

are interpreted as indifference curves). Of course, the quadratic form is

merely a local approximation to the true utility function. Nevertheless, if

the entire surface of the true utility function was quadratic, the apparent

global optimum of that function would be located at 28.4 fishing days and

$289,823

days and

relevant

in median zip code income (compared to sample means of 17.4 fishing

$31,725 in income). Thus the utility function is well-behaved in the

region. At the means of the data, the two marginal utilities are

positive. The implied price elasticity of demand at the means of the data is

-0.074 and the income elasticity is 0,078, although these elasticities change

substantially with deviations away from the sample mean values. To establish



Table II

Fitted Quadratic Direct Utility Parameters
(with and without parameters constrained to be identical

for CVM and TCM portions of model)

Constrained @ Unconstrained 6s

Parameter Point Est. Implied Point Est. Implied
(Asymp. t-ratio) P*- @/B~ (Asymp. t-ratio) P*- WPZ

27.76 1.276b  0.045303.309
(8.237)a

)91 (z)

i32 (q)

/93 (z2/2)

P, (zq)

B5 (q2/2)

(0.7457)

1.0 28.17 1.0
(2.573)

0.1192
(19.55)

-0.9790 1.498 0.05318
(2.834)

-0.1167
(-1.836)

0.002579
(2.006)

0.02164 2.263 0.08033
(2.147)

-0.006837
(-22.80)

-0.05736 -502.3 -17.83
(-1.311)

75.89
(5.756)

-

1.0
-

-

-10.89
(-2.428)

-

-0.01749
(-0.9029)

-0.04739
(-14.97)

-

16.01
(81.98)

15.97
(82.04)

0.2505
(9.749)

v

0.2315
(9.086)

P

max Log L -15708.17 -15640.61c

a Asymptotic t-ratios in parentheses.
b CVM utility parameters do not satisfy regularity conditions.

‘ Likelihood ratio test statistic for four parameter restrictions - 115.12.
Equivalence of utility parameters is soundly rejected.
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a visual benchmark for this basic model, for an

and travel costs, an indifference curve

function, the budget constraint through

attainable Indifference cume are shown

Using the basic constrained model

for the

(#y*o) ,

individual with mean income

empirical quadratic utility

and the fitted maximum

in Figure 1.

that assumes one common utility

function for all respondents, it is possible to use equation (18) to compute

fitted values for the equivalent variation (either for ‘each respondent, or at

the means of the data). Across the 3366 respondents in this sample, the

fitted values of E for a complete loss of access

Table III (a - 0).12 Over the estimating sample,

for the equivalent variation for a complete loss

appear in the first row of

the average point estimate

of access is $3451 (or,

alternatively, at the means of the data, it is $3423). Minimum and maximum

values in the sample are also provided.

Table III also gives the model’s estimates for the equivalent variation

associated with successively smaller restrictions on days of access (a denotes

the proportion of current consumption to which each individual’s access days

13 For an across-the-board 10% reduction in fishing days, forare restricted).

example, the average calculated utility loss by these respondents would be

only $35, although values as high as $52 and as low as $19 can obtain, due

solely to different incomes and travel costs faced by different respondents.

The main policy interest in equivalent variations for partial

restrictions on access stems from the need to make optimal allocations of

finite fish stocks between recreational” anglers and commercial harvesters. If

12 For the single individual with average characteristics in Figure 1, this
quantity would be determined by taking the parallel downward shift in the
budget constraint which would leave the new constraint just tangent to the
lower indifference curve.

13 The computed equivalent variation, plotted as a function of a, is convex
when viewed from below.
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Table III

Fitted Individual Equivalent and
Compensating Variation Estimatesa for
the Basic (Constrained) Model (Table II)

Valuation mean max min
Measure:

 

Equivalent
Variation

a - 0.0b

a - 0.1

a - 0.2

a - 0.3

a - 0.4

a - 0.5

a - 0.6

a - 0.7

a - 0.8

a - 0.9

Compensating
Variation

a - 0.0

$ 3451

2799

2214

1697

1248

867

555

313

139

35

$ 3560

$ 5132

4166

3298

2529

1861

1294

829

467

207

52

$ 5361

$ 1857

1505

1190,

912 “

670

465

298

168

75

19

$ 1899

Since the same utility function is presumed for
all respondents, individual variations in
these quantities stem solely from differences in
income and travel costs.

For access days restricted to the fraction a of
fitted current access days.
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faced with a proposal to cut back on recreational access, it would be

necessary to quantify the social losses co recreational anglers, compare these

losses to the anticipated gains accruing to commercial harvesters, and then to

argue that such a. redistribution of the catch would result in a potential

Pareto improvement.14

The final row of Table III provides, for comparison, the corresponding

compensating variation for a complete loss of access (i.e. for a - 0 only).

As is typical, the compensating variation for the loss is larger than the

equivalent variation for the same loss. Here, however, the difference is

largely an artifact of the quadratic form chosen for the utility function.

The concentric ellipses which form the level tunes of a globally concave

utility function can be expected to have this “relationship.

B. Different Preferences Implied by Real versus Contingent Data

We require both a constrained and an unconstrained specification if we

plan to use a formal likelihood ratio test statistic to determine whether the

utility parameters implied by the CVM data alone are consistent with those

estimated jointly using both CVM and TCM data. The constrained specification

(the basic model just described) appears in the first pair of columns in

Table II.

For the unconstrained model, the demand information necessary to compute

the endogonous quantity in the CVM discrete choice model is calculated using

only the utility function parameters for the C V M portion of the model. We

therefore allow the discrete choice CVM model exclusively to imply values for

1’ In a richer specification, with enough shift variables to more closely
capture the variations in quantity demanded, it would be an interesting
exercise to assess total aggregate losses due to restrictions of access to
specific numbers of days. The present data are not appropriate for simulating
these policy changes.
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61, P2, Pa, B,. and B5. The observed TCM demand decisions will imply separate

values for PI*, L9a*, @b*, and #15*.

The second pair of columns in Table II displays results for an

unconstrained model corresponding to the first pair of columns in the same

table. The point estimates do not bode well for the consistency of the

preferences elicited by the two types of responses. First of all, it is

especially unsettling to note that the quadratic direct utility function

implied by the C V M data alone does not even conform to the regularity

conditions expected of a valid utility function. At the means of the data,

the implied marginal utility from an additional access day is negative; there

is also increasing marginal utility with

TCM quadratic direct utility parameters,

(The only link between the two submodels

P.)

respect to the composite good. The

however, are thoroughly acceptable.

is the estimated error correlation,

Nevertheless, there must still be some information about preferences in

the CVM data, and the recorded responses on these su~eys dictate these

particular parameter values. We can certainly still compare the maximized

value of the log-likelihood in the constrained and unconstrained models in

order to assess whether the imposition of cross-equation parameter

restrictions is tenable. A likelihood ratio test for the set of four

parameter restrictions embodied in the “basic” model soundly rejects these

restrictions.15 For this quadratic specification, the CVM- and TCM-elicited

preference functions are different.

15 It may be suspected that the TCM estimates systematically understate the
true value of access (due to underestimates of the actual opportunity costs of
access) and that the CVM estimates systematically overscace the true value of
access (due to the incentives embodied in the way the question was posed). If
data deficiencies make it too implausible to force compatibility of these
responses with a common underlying set of preferences, the researcher would of
course be free to report the two types of value estimates separately.
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For a respondent with mean characteristics, Figure 2 shows the empirical

indifference curves passing through the bundle (O,Y) for (i.) the “basic”

constrained model and (ii.) the demand portion of the unconstrained model.

The greater curvatrue of the indifference curve for the restricted parameters

implies that E (the equivalent variation) based on the joint model, will be

substantially larger than E based on observed TCM market demand behavior

alone. For the unrestricted TCM demand parameters, the fitted equivalent

variation at the means of the data is only $1686 (versus

constrained model).

The implied inverse demand functions corresponding

about $3451 for the

to the different sets

of preferences implied by the joint model and by the unconstrained TCM model

are shown in Figure 3. When the CVM responses and observed TCM demand

behavior are constrained to reflect the same set of quadratic preferences, the

reservation price is about $409. The unrestricted TCM demand behavior implies

a much lower reservation price. Thus the CVM (i.e. hypothetical market)

scenario does seem to invite respondents to overstate the strength of their

demand

market

for resource access, as one might suspect

data understates the strength of demand).

(and/or the TCM indirect

c. Differing Reliability for Real versus Contingent Data

The basic model (with or without the utility parameters constrained

across the two sub-models) reflects the presumption that the decisions which

respondents claim they would make under the hypothetical scenario proposed in

the CVM question deserve to be treated as equally credible when compared to

their actual market behavior regarding number of fishing days demanded. This

need not be the case.

In other research on CVM (Cameron

techniques were used to demonstrate the

and Huppert, 1988), Monte Carlo

wide range of referendum CVM value
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estimates which can result simply as an artifact of the arbitrary assignment

of the threshold values on the questionnaires. One conclusion in that study

was that researchers should probably insist on vastly larger samples for

referendum CVM data, in order to offset the inefficiencies in estimation which

result from the highly diffuse information in referendum responses. By

itself, this property of referendum data might be sufficient to warrant a

discounting of its credibility when it is combined with ”point” information

from the same sized sample.

Fortunately, researchers are free to use their own prior opinions to

adjust the relative credibility of each type of information. This can be done

in an ad hoc fashion, by employing non-unitary weights on the respective terms

in the log-likelihood function (see Appendix IV). Alternately, it can be done

more rigorously, by making assumptions about the variances of

distributions of the estimated @ parameters around the “true”

vector. 16

In the discussion that follows, we assume that CVM data

be less reliable than travel cost data, since this has been a

t h e

mean of the ~

are presumed to

typical

sentiment among researchers in this area. However, the demand information

inferred from the travel cost data is also likely to be unreliable, especially

since TCM applications often assume that the opportunity cost of access is

constant as access days increase. If opportunity costs rise, as they most

likely do, TCM will underestimate the implicit value of access, perhaps

severely. 17 Also recall that we do not impute an arbitrary value of travel

16 We owe this helpful suggestion to Ed Learner.

17 If increasing opportunity costs of access can be captured in the data,
there exist econometric strategies for dealing with non-linear budgets sets
which could undoubtedly be adapted to this type of problem. (See Hausman,
1985.)
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qualities of the two types of

of information can be decided

Utilizing Explicit Priors on the Distributions of L9 and P*

Let e continue to denote the utility parameter estimates derived from

the CVM data, and let ~“ be the utility parameter estimates from the TCM data.

Let # signify the true but unknown utility parameter vector. (Without loss

of generality, we can normalize the second element, ~z, to unity in all three

cases.) Now assume that conditional on the true ~z, ~ and ~“ are

statistically independent and that the elements of @/#r are

N(1,u2) and the elements of ~*/~*

distinct from the unidentifiable

section III.)

are distributed N(1,u*2).

probit regression variance

distributed

(These us are

employed in

The researcher is free to make prior assumptions about the magnitudes

and relative sizes of U2 and 0*2, and this prior information can be

incorporated into the log-likelihood function in (7) as follows. Note that

bz. @ and b“ are now all estimated separately, so the parameter space is

increased. The additional log-likelihood term will be:

(20) -n log2s - n(log u + log u*)

“ (1/2) z ( [(/7/pT)-1]2/a2+ [(/3*/~f)-1]2/a”2 ).

Maximization of the augmented log-likelihood with respect to the vectors of

variables ~, P*, @r, v, and P, given preselected values of U2 and o● 2 will

yield, for the model with identical consumers, fifteen distinct parameter

estimates. 18

18 It is not possible to optimize this likelihood function also with respect
to u and ~. The algorithm will drive these values to zero.
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What are the consequences for our ultimate estimates of the equivalent”

variation for a complete loss of access? In Table IV, the first column,

reproduced from Table II,
*reflects an implicit assumption that a - u - 0.

(The implied Marshallian demand parameters corresponding to the CVM portion of

the model are given in the second column.) Nothing is “tying together” the

two sets of estimates for the utility parameters, so they are very different

indeed.

In contrast, for arbitrarily selected standard errors a - 1.0 and

*o - 1.0, the third column of Table IV displays the revised estimates of ~ and

P* , along with the additional, separate, estimates of the true b=. (The

fourth column again shows the Marshallian demand parameters impliedby the CVM

L3 estimates.) Ultimately, of course, we are interested in the value

implications of the estimates. At the means of the data, these “tree” #

parameters imply en equivalent variation for a complete loss of access of

$3378 (which is very little different from the $3423 ● t the means of the data

for the basic model),

To illustrate a more-extreme case, we also include another pair of

columns in Table IV. In this case, the assumed standard error of L3/@ (for

the CV M parameters) is increased to 3.0.  A standard error thi s large would

seem to discredit the CVM data substantially.  The assumption of poorer-

quality information has the anticipated effect upon the precision of the three

sets of utility parameters in the model.  The asymptotic t-ratios for all of

the different @ parameters drop substantially, with the coefficients on Z*

and zq becoming insignificant in all three cases. However, the resulting

equivalent variation according to @T shrinks only to $3124.

To assess

implications to

the sensitivity of the parameter estimates and the welfare

different assumptions about the distributions of ~ and &



Table IV

Joint Models with Separate CVM and TCM Parameters
(CVM end TCM discounted by disproportionate variances)

no u. ~. $= =1 - 1.0 ‘1 - 3.0
‘2 - 1.0 ‘2 - 1.0

Parameter  Point Implied Point Implied Point Implied
Est. P Est. P Est. B*

/!?l (z)

P* (q)

@, (z2/2)

B, (zq)

P, (q2/2)

q~fl#19z

p2*+/p2

P3*-A93/192

i3,*-B4/L9~

P,*-B,/#z

PIT-L91%92T

A91T-BIT/19**

~3T-fi3T/f12T

@4T+4T/#2T

fi5T-fi5T/f12T

u

P

1.276
(0.7457)
28.17
(2.573)
1.498
(2.834)
2.263
(2.147)

-502.3
(-1.311)

:5.89
(5.756)
1.0

-

-10.89
(-2.428)
-0.01749
(-0.9029)

-0.04739
(-14.97)

-

-

15.97
(82.04)

0.2505
(9.749)

0.04530 3.421
(8.361)

1.0  0.1217
(16.67)

0.05318 -0.1383
(-1.883)

0.08033 0.002157
(1.909)

-17.83 -0.007072
(-14.36)

28.48
(9.323)

1.0
-

-1.135
(-1.846)

0.02069
(1.793)

-0.05714
(-25.74)

28.30
(9.484)

1.0
-

-1.136
(-1.845)

0.02068
(1.794)

-0.05763
(-23.35)

16.01
(81.95)

0.2317
(9.120)

28.11 3.930 30.07
(2.989)

1.0 0.1307 1.0
(13.18)

-1.136 -0.2572 -1.968
(-0.5393)

0.01772 0.002038 0.01559
(0.7828)

-0.05811 -0.007873 -0.06024
(-6.875)

32.56
(2.679)
1.0

-

-1.945
(-0.5421)

0.01561
(0.7751)

-0.05596
(-14.74)

32.33
(2.707)

1.0
-

-1.947
(-0.5418)

0.01560
(0.7751)

-0.05641
(-13.87)

16.00
(81.87)

0.2331
(9.090)
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(relative to 131), one can perform a grid search across different values of a

and O* to produce a range of values for the “true” @T coefficients and for the

implied equivalent variations. These are summarized in Table V. (Since these

functions are extremely expensive to optimize, we provide results only for

combinations of

CVM data are at

questionable. )

u and O* where o > a*. It seems likely, a priori, that the

least as noisy as the TCM data, although both may be

The implied equivalent variations, EV, for each set of error

assumptions, appear in bold print, implying a surprising robustness of the

value estimates to differing reliabilities of the two types of data.

What conclusion is implied? A very wide range of different assumptions

can be made about the relative reliability of CVM and TCM data, without

producing too much difference in the ultimate welfare implications of the

fitted preference functions. This result should be greatly reassuring,

although it is conditional upon the maintained hypotheses of quadratic direct

utility and has been demonstrated for this one sample only.

D. Accommodating Respondent and/or Resource Heterogeneity

The models described above have presumed that these respondents are

homogeneous on all dimensions other than income, Y, proposed tax, T, number of

fishing days, q, and typical market expenditures, M. It is a simple matter,

however, to relax this assumption.

For example, one can explore the effects of allowing the utility

parameters to vary continuously with the level of a sociodemographic variable.

In the ad hoc valuation models explored in Cameron, Clark, and Stoll (1988),

it was found-that the Census proportion of people in the respondent’s zip code

who report themselves as being of Vietnamese origin, PVIET, seemed to be



Table V

Results of Grid Search across Different Error Assumptions
For the Distribution of the CVM and the TCM Parameter Vectors

Travel Cost
Contingent Information:
Valuation
Information: U*- 0.5 1.0 1.5 2.0 2.5 3.0

0 -

0.5 al;
‘3T
‘4T
/35

EV ● t means:a

27.90
-1.021
0.02139
-0.05742

$3412

28.15 28.30
-1.070 -1.134
0.02108 0.02070
-0.05735 -0.05763

$3395 $3378

28.64 28.75
-1.177 -1.224
0.02043 0.02013
-0.05720 -0.05750

$3364 $3348

29.39 29.53
-1.331 -1.391
0.01967 0.01910
-0.05698 -0,05725
$3317 $3300

30.53 30.64
-1.s66 -1.614
0.01802 0.01770
-0.05665 -0.05692

$3245 $3229

32.17 32.32
-1.887 -1.945
0.01600 0.01561
-0.05617 -0.05642

$3141 ‘ $3125

29.01
-1.335
0.01944
-0.0S796

$3320

29.74
-1.482
0.01852
-0.05773
$3272

30.84
-1.702
0.01712
-0.05738

$3202

32.51
-2.025
0. 01S06
-0.05686

$3099

30.10
-1.636
0.01852
-0.05773

$3233

31.10
-1.820
0.01633
-0.05805

$316S

32.77
-2.142
0.01427
-0.05769

$3062

31.51
-1.998
0.01516
-0.05892

$3116

32.96 33.08
-2.247 -2.347
0.01350 0.01270
-0.05840 -0.05963

$3019 $2970

a The values for EV may or may not be statistically significantly different.
They are the solutions of the elaborate quadratic formulas given in
equation (18) in the body of the paper.
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influential in a wide range of models.19 Allowing this variable to shift the

parameters of the quadratic utility function, one can replace the constant /3j

by the varying parameter (P, + yjPVIETi) for j - 1,...,5. Table VI

demonstrates that the PVIET variable does indeed make a statistically

significant difference to the overall fit of the model and to the parameters

of the utility function.20 Individually, only 75, reflecting the additional

curvature of the utility function with respect to fishing access days, is

statistically significantly different from zero. However, the whole set of

shift terms is jointly significant according to the likelihood ratio test

statistic value of 28.40 (where x2.05(5) - 11.07).

A visual display of the effect on preferences of allowing for

heterogeneity with respect to the PVIET variable is displayed in Figure 4. As

benchmark levels, PVIET=0 and PVIET=.02 are selected. (Maximum PVIET in the

sample 1s 0.0649). Other than this distinction, the indifference tunes

pertain to individuals both having the overall sample’s mean income and travel

costs .

The higher the proportion of individuals of Vietnamese ancestry in the

respondent’s zip code, the greater the cu~ature of the indifference tunes,

and the larger the implied equivalent variation for a loss of access to the

fishery. Current optimal numbers of days are similar for the two

representative anglers, so the large discrepancy between the vertical

intercepts of the two empirical indifference curves suggests that while the

two socioeconomic groups exhibit similar current behavior, they respond

19 This is consistent with anecdotal evidence which suggests than many people
in this socioeconomic group supplement their diets with “recreationally-
caught” fish.

20 Both the income and PVIET variables are certainly measured with a degree of
error due to reliance on Census zip code means. With specific data at the
individual level, the following results would certainly be somewhat different,



Table VI

Jointly Estimated Model;
Heterogeneous Utility Function

(varies with proportion Vietnamese)

Coefficient Estimate
and Variable (asy. t-ratio)

/+ (z)

P, (zq)

B, (q2/2)

Y1 (zPVIET)

72 (qPVIET)

7 3 (z2PVIET/2)

7 4 (zqPVIET)

75 (q2PVIET/2)

u

2.897
(2.761)

0.1195
(14.87)

0.1210
(0.3711)

0.003829
(1.800)

-0.007125
(-21.84)

96.64
(0.7534)

-0.08279
(-0.09106)

-58.89
(-1.467)

-0.3573
(-1.395)

0.08352
(6.583)

15.95
(81.93)

0.2302
(8.971)

Max. logL -15693.97a

a Compare to basic model in Table II.
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systematically

zip codes with

differently to the hypothetical CVM question. Respondents from

higher proportions of population with Vietnamese ancestry are

more inclined to claim that they would continue to fish despite substantial

annual access fees. Figure 5 shows how these different preferences translate

into systematically different inverse demand curves. The demand curve for the

PVIET - 0.02 group is situated considerably further out than that for the

PVIET - 0 group.

What is the policy significance of the finding that preferences for

fishing access

imply that any

can vary across sociodemographic groups? Different preferences

policy measure the government might contemplate will have

distributional consequences. This will be true whether the policy affects

real incomes or the relative price of access or if it consists of access

restrictions. Distributional effects can be of critical importance in policy-

making.

which

type.

Ethnic differences are just one of a variety of sources of heterogeneity

could be recognized explicitly in resource valuation models of this

For models intended to allow simulation of specific policy measures, it

will also be important to incorporate dimensions of heterogeneity which can be

affected by these policy actions. For example, individual values for access

to a recreational fishery are affected not only by angler characteristics, but

also by attributes of the resource in question. In one illustration, for a

subsample of this dataset, we have addressed the effects on social value of

respondent’s perceptions about pollution levels (Cameron, 1988b). Not

surprisingly, deteriorating environmental

access and diminishes the social value of

improvements increase social value. This

quality reduces the demand for

the resource. Likewise,

type of model can be used to
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simulate anticipated social benefits’ accruing to recreational anglers if

government or private expenditures are devoted to cleanup efforts.

We have also supplemented a subset of the survey data used here with

independently gathered data on the abundance of the primary gamefishing target

species (Cameron, 1988c). The experiment reveals that gamefish abundance

makes intuitively plausible and statistically significant differences in

preferences and therefore in the social value of the resource. This type of

model can be used to simulate the social benefits to recreational anglers as a

consequence of fish stock depletions or enhancement programs.21

VI. CONCLUSIONS AND CAVEATS

A fully utflicy-theoretic specification distinguishes this analysis from

much earlier empirical work on the valuation of non-market resources. By

concentrating on identifying the underlying preference structure for access

days versus all other goods and services, theoretically sound measures of

access values (equivalent

produced.

Several features of

starts from an assumption

and compensating variations) can readily be

the “basic” model should be emphasized. First, it

of quadratic direct utility, presumed to explain the

hypothetical contingent valuation responses. Second, the associated non-

linear Marshallian demand functions are employed to explain the observed

demand decisions by the respondents (a “travel cost” type of model). Third,

the corresponding parameters in the utility and the demand functions are

21 For our three examples of how respondent and resource heterogeneity can be
accommodated in this prototype model, we have assumed that these sources of
heterogeneity are mutually orthogonal, so that they may be entered
individually and separately. For sufficiently large surveys, the complexity
of these heterogeneous models is limited only by the variables upon which data
have been collected and by computing capacity. Very elaborate models can
potentially be accommodated.
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constrained to be identical. Fourth, the quantity demanded under the CVM

scenario is fully endogenized. And finally, unobservable attributes of

respondents are allowed to affect both types of responses simultaneously

through a non-zero (estimated) error correlation.

The “basic model” forms a minimal prototype for models in a wide range

of applications in resource valuation. However, this paper has also described

a variety of important extensions --potentially very relevant to subsequent

researchers. “Prior” assumptions about the relative qualities of the

hypothetical CVM questions and the “real” travel cost data can be used to”

modify the influence of each of these responses during joint estimation the

utility parameters, Examples have also demonstrated that it is

straightforward to allow the parameters of the quadratic preference structure

to vary systematically with the levels of (exogenous) respondent or resourco

attributes.

To review the central empirical findings (for these data, in combination

with the assumption of quadratic preferences), the “basic model” yields a

sample average fitted equivalent variation of $3451 for a complete loss of

access to the fishery. In contrast if ccess days for each individual were

restricted by only 10%, the average equivalent variation would be only $35.

The implications of the model for small local variations are probably more

reliable,  although in this case, the complete loss is explicitly “within the

range of the data” because of the information extracted from the CVM

responses.

Some caveats should be emphasized. Tho sample for this application was

consciously trimmed along a number of dimensions. Most notably,

reported fishing more than

attempting to fit a single

60 days per year was dropped from the

utility function to an entire sample,

anyone who

sample. When

the
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must be at least roughly tenable. People

probably have fundamentally different

With enough detailed information about the exogenous

sociodemographic attributes of these individuals that might account for these

differences, one could accommodate broad heterogeneity. This survey, however,

provides little such information. In order to highlight the capabilities of

the model (without obscuring the relationships due to unrecognized

heterogeneity), it is necessary to disenfranchise some extremely avid anglers.

Consequently, if these average values are scaled up to the population of

anglers, the total will underestimate the true value of the fishery.

Fortunately, with more detailed surveys (and future generations of computing

hardware and software), more comprehensive models will certainly be

practicable.

From a policy standpoint, it is also critical to emphasize that in many

applications, the benefits computed for the group of resource users

represented by the survey sample will comprise only a portion of the total

social benefits generated by the resource. Non-consumptive use of the

resource will often be

be larger by orders of

as the one analyzed in

here, for example, are

by residents of Texas,

entire world.

Methodologically,

substantial: option and existence value can sometimes

magnitude than the user values implied by survey such

this study. The dollar measures of benefits produced

only a lower bound on the total social benefits enjoyed

the rest of the United States, the continent, or the

this research has demonstrated that it is indeed

feasible, and probably highly desirable, to employ referendum contingent

valuation data in the context of a fully utility-theoretic model whenever the

quality of the data justify such an effort. These results also demonstrate
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forcing contingent valuation utility parameter estimates to be consistent

observed demand behavior can have a

preference structure, the implied demand

apparent social value of the resource or

It has also been demonstrated that

substantial effect on the estimated

functions, and ultimately on the

public good.

jointly estimating the

discrete/continuou8 choices of respondents without parameter constraints

allows a rigorous statistical check of the consistency of the hypothetical CVM

responses with demonstrated real market decisions (conditional on the

functional form chosen for utility). The implications of this dimension of

the problem are being explored in greater depth in some follow-up research.

Previous validation studies have typically relied on entirely separate models

for CVM data and other types of data, such as travel cost information or

market experiments. This earlier strategy allows comparisons of point

estimates of value, but precludes any statistical assessments of the degree of

similarity between the results. In contrast, the joint models presented here

permit standard likelihood ratio tests. For this sample, the hypothetical CVM

data and the obsemed TCM data appear to imply sharply different sets of

preferences if completely independent sets of utility parameters are

estimated. In other applications, however, consistent responses under the

real and hypothetical scenarios may be readily accepted. Such a finding would

reinforce the credibility of contingent valuation procedures in those

contexts.

When CVM and TCM data are combined in the estimation process, in order

to exploit all of the information available, it has been demonstrated that the

researcher can systematically accommodate into the estimation process any

prior opinion regarding the relative reliability of the two types of data. It
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is possible to like the two source of preference information without forcing

the implied utility function to be exactly identical.

In sum, this research demonstrates the value of combining both

contingent valuation and travel data whenever possible. Pooling of these two

types of valuation information allows the advantages of each technique to

temper the disadvantages of the other. Making the underlying preference

structure of consumers the core of the analysis facilitates joint modeling of

the two decisions. It also allows a rigorous assessment of the probable

responses of individual consumers under a wide range of simulated

counterfactual scenarios, and permits welfare estimates which are consistent

with neoclassical macroeconomic theory.
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APPENDIX I

An Alternative Interpretation of the Contingent Valuation Question

In this study, an alternative interpretation of the CVM question is

conceivably possible. Perhaps respondents think of the access fee T as

implicitly reflecting a price change at their current consumption level,

q(y,M), rather than a lump sum tax. They may interpret the question as asking

whether or not they would choose non-zero access days if the price per day

went from M to M+(T/q(Y,M)). In this case, the the CVM question would seem to

be asking respondents whether their post-price change optimal consumption of

access days would be positive. (I.e. if their optimal number of access days

was negative, their highest utility would correspond to zero access days,

providing that preferences are well-behaved.) The results reported in this

paper have emphasized the “lump sum tax” interpretation, but some results for

the alternative “price change” interpretation are provided here for

comparison, since the interpretation does affect the resulting estimates of

resource value.

Rather than the utility-difference underlying the discrete response in

equation (5),this projected optimal consumption level would “drive” the

discrete choice portion of the model. A “yes” response implies that the

respondent’s optimal consumption of access days under the hypothesized

scenario is positive. A “no” would mean that optimal consumption would

actually b. negative, but zero days are the fewest which can be consumed. The

“yes/no” response thus provides censored information regarding the magnitude

of optimal quantity demanded. Unlike conventional probit models, where the

location of the distribution is unknown (and therefore set arbitrarily to

zero), the “threshold” in this case is exactly zero days. AS above, g(x~,~)

will be adopted as the generic representation for the MarshallIan demand
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function corresponding to the quadratic utility model, where the variables xi

include income and the “price” of a day of access. As in Section III, u can

be used as the same (constant) standard error of the conditional distribution

of quantities demanded. The magnitude of u can be inferred from observed

consumption under current prices, so the conditional dispersion of the

unobservable dependent variable in the CVM model is “known” (in contrast to

the conventional probit situation).

Providing, then, that it is reasonable to assume that real and

hypothetical behavior are derived from the identical set of underlying

preferences, the discrete responses to the CVM question can be used to

supplement the estimation of the underlying demand parameters. Specifically,

the expression (f(xL,~)/a) in equations (5) and (7) will be replaced by

g(x~*,@)/v, where xi* includes current actual income, but price M is replaced

by the hypothesized (M+T/q(Y,M)).

One difference under this interpretation of the CVM question is that

this specification no longer allows identification of the individual utility

parameters (PI through @5, up to the scale factor, a, of the unobservable

dispersion in the latent variable driving the CVM response). Only the demand

parameters, PI*, 113*, P,*, and f15* and v can be identified. Fortunately, the

utility function is invariant to the scale of the parameters and arbitrarily

setting pz “- 1 will result in exactly the same implications in terms of

optimizing behavior.

The demand parameter estimates for the utility function under this

fundamentally different interpretation of

Table 1.1. It is not surprising that the

systematically from their counterparts in

the CVM question appur

point estimates differ

the body of the paper.

in
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For this version of the joint model, the marginal utilities at the means

of the data are positive; the price elasticity of demand for access days is

about -0.035; the income elasticity is 0.11. The implied global optimum is

20.2 access days and $78212 in median household income.

While the fitted utility function under this interpretation is

completely plausible from a theoretical standpoint, the implications of this

model are quite a bit different from the “lump-sum tax” interpretation. The

sample mean of the fitted equivalent variations for a complete loss of

resource access, according to these preferences, is markedly higher, at $7386

(with standard deviation $2244). Clearly, subsequent surveys will have to be

very careful in conveying to respondents exactly what type of scenario is

intended, since the interpretation of the question can make almost an order of

magnitude difference in the results.
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Table 1.1

Model with CVM Question Interpreted as Price Change

Parameter Point Estimate
(asymp. t-ratio)

(z) 19.80
(5.366)

(q) 1.000

(z2/2) -2.613
(-2.573)

(zq) 0.03155
(1.726)

(q2/2) -0.06163
(-18.23)

16.18
(86.75)

0.08754
(3.080)

Max. LogL -15708.12



APPENDIX II

Alternative Direct and Indirect Utility Specifications

Other linear-in-parameters functions that have been widely used

empirically include tha translog and tha generalized Leontief specifications.

The translog is quadratic in the logarithms of the arguments, but it is

critical for the basic model in this paper that direct utility levels be

defined and non-zero when consumption of one commodity (namely, recreation

days) goes to zero. This disqualifies the ordinary translog model, since this

function is only defined over strictly positive quantities of each good.22

The generalized Leontief specification satisfies the boundary

requirements, and is generally considered to be a more “flexible” functional

form than the quadratic. However, while a generalized Leontief indirect

utility function can readily be differentiated to yield Marshallian demands,

this similar functional form for the direct utility function yields

Marshallian demands which are prohibitively complex.

Empirical research on consumer decisions has sometimes employed the

Stone-Geary utility function and its corresponding “linear expenditure system”

demand equations. This specification may at first seem attractive, but it too

is only appropriate when one is considering interior consumer optima. In this

case, the utility function would be:

(11.1)
b~ /94

u (z,q) - (z - /31) (q - 83)

The corresponding demand for fishing days will be given by:

22 One could, of course, shift the utility surface one unit towards the origin
along the dimension of each good by adding ona to each quantity within the
functional form for the translog direct utility. However, when the direct
utility function, rather than the indirect utility function, takes on a
translog functional form, the associated Marshallian demand functions are
awkward to derive; they are even more awkward if the function Is additively
shifted.
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(11.2)

where the price of

This utility

cannot be obtained

q -/93+ (~4/p) [Y - ~1 - p3p]

the composite good, z, has again been

function is not linear in parameters,

via a conventional maximum likelihood

normalized to unity.

so initial estimates

probit package. But

there is a bigger problem, stemming from the necessity of considering utility

levels for zero days of access. In particular, the systematic portion of the

utility difference function, which would form the non-linear “index” function

for the discrete choice portion of the model, would take the following form:

P~ b, P~ B,
(11.3) AU - [(Y-M-T) - PI] [q - B~l - [ Y-#ll] [-9,1

The problem for estimation stems from the last term. The coefficient ~, is

often fractional. Attempting to take the ~6-root of a negative number can be

expected to create difficulties. Furthermore, the usual interpretation of 93

is that is represents “subsistence” consumption levels of commodity q, so

negative values of the parameter itself are unlikely to result, or to be

defensible intuitively, if they do.

model using the data employed in the

persistently failed.

The quadratic form is a useful

As expected, in attempts to estimate this

rest of this study,

local approximation

the algorithm

to any arbitrary

surface. Why not then expand to third-order terms? Several of the quantities

of interest which are derived from the calibrated model necessitate solving

the fitted utility function for the value of one of its arguments. The

standard formula for computing quadratic roots is straightforward to use. The

formulas for the roots of cubic equations are considerably less easy. (See

CRC, 1981, p.9.) However, continuing empirical research explores such forms,
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since the results for quadratic utility specifications suggest that a higher

degree of parametrization might be supported.23

Contemporaneous work by Huppert (1988) employs an alternative strategy

in the context of a standard simultaneous equations model. He begins with a

simple functional form (log-linear) for the Marshallian demand specification

and accepts the corresponding (unnamed) functional form for the underlying

utility function. Huppert’s payment card contingent valuation responses are

treated as a continuous variable, so that the

and demand parameters can be accomplished via

non-linear least squares algorithms.

joint estimation of the utility

standard packaged simultaneous

It is interesting to compare the results derived using a quadratic

direct utility function (and implicitly its associated indirect utility

function) with those derived for a model that begins with an indirect utility

function which is quadratic in prices and income. This will imply a very

different function form for the direct utility function.

If indirect utility, V, is quadratic in the price of z, the price of

(i.e. M), and income Y, the terms in the unitary price

into a constant and into the coefficients on M and Y.

functional form will be:

(11.4) . V(M,Y)-el M+a2Y+ aa M2/2+a,m+

of z will be absorbed

The effective

as Y2/2.

The corresponding Marshallian demand for q is given by application of Roy’s

Identity:

23 The data appear to support cubed terms in z and q, but the optimization
algorithm cannot seem to settle upon coefficients for the second-order
interaction terms, z2q and zq2. The two cubed terms do make a statistically
significant improvement in the log-likelihood. function for the model.
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(11.5) q(Y, M) = - (av/aM)/(av/aY)

-(-a1-a3M- CZ,y)/(Q2 + +4 + a5y),

or, normalizing az to unity:

(11.6) q(y,M) = (- al* - =3*M . ak*y)/(l + a4*M + a5*y)o

The respondent will decide to pay lump sum tax T and continue fishing if

V(M,Y-T) > V(Y), i.e., if

(11.7) AV(Y,M,T) - f(xi;~) - al M + az (-T)

+ as M2/2 + a, M(Y - T) + as [(Y-T)2 - Y2]/2 > 0.

The equivalent variation, E, which would leave the respondent

indifferent between fishing and not fishing is given by the quadratic root E

of:

(11.8) a,/2 E2 - [ a2+a4M+a~Y 1 E + [a#+a#2/2+a4MY ] - 0.

The joint model can be set up as in the text of the paper, except now we

have f(xi,~) - AV(Y,M,T) and g(x~,~) is replaced by the Marshallian demand

formula derived in this section.

The indirect utility approach has

not require endogenous determination of

the distinct advantage that it does

post-tax quantity demanded, q(Y-T,M).

However, the direct utility specification corresponding to this representation

of preferences is prohibitively awkward to derive, so the intuitive advantages

of standard indifference curve diagrams are beyond our reach.

Nevertheless, it is straightforward to estimate the joint model of

indirect utility differences and the corresponding Marshallian demands. We

have done so. The parameter estimates appear in Table 11.1.
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Unfortunately, while the direct utility approach used in the body of the

paper easily satisfies the regularity conditions for a valid utility function,

this is not the case for the quadratic indirect utility specification used

here. V(M,Y) should be nonincreasing in M and nondecreasing in Y. At the

means of the data, however, the parameters given in Table 11.1 produce a value

or 97.87 for aV/aM and a value of -5.653 for W/aY. As a consequence of these

irregularities, the values we compute for the equivalent variation associated

with a loss of access are nonsensical. In other applications, however, the

indirect utility approach (possibly using alternative functional forms) may

prove to be satisfactory, or even preferable, to the direct utility model,

especially if it 1s deemed unnecessary to provide empirical indifference

tunes as a visual aid.
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Table 11.1

Quadatic Indirect Utility Specification

Parameter Point Estimate
(asymp. t-ratio)

/Jl* (M) 75.50
(6.642)

~2* (y) -4.123
(-6.667)

53* (M2/2) -4936.81
(-8.237)

11.59
(3.374)

-0.4929
(-2.624)

v 15.97
(82.04)

P 0.2043
(8.506)

Max. LogL -15957.66
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APPENDIX III

Estimates in the absence of travel cost data

In some applications, M may be measured accurately and may be relativel

constant across fishing days, but in other cases, it may not. Sometimes, the

researcher may be better off ignoring the questionable information on M, and

using a simpler “Engel curve” model as opposed to a

equation numbers indicate revisions of the original

“demand function” (where

specification):

(1’) AU = U( Y - T, q1 ) - U( Y, 0 ) > 0.

If the data on M are excluded, z will be identically Y.

(lo’) AU(Y,T) - l?l ([Y-T] - Y} + 82 q1

+ P3 ([Y-T]2 - Y2)/2 + ~4 [Y-T]q1 + ~5 (q1)2/2.

(11’) q(Y) = [l+(B4*)Y1/[”B5*].

(17’) aq/ap - [ fl~(fi~-fl~y) - 2@,(A92+k94y) 1 / [P512

aq/ay - -f14/P~.

In order to appreciate the benefits of joint estimation with income data

and numbers of trips but in the absence of travel costs as proxy data for

prices, one can consider the estimates of the utility function parameters when

the data on M in this sample are ignored. Table 111.1 displays these results.

At the means of the data, these fitted parameters imply a utility function

with positive marginal utility from

marginal utility from access days.

this case is not globally concave.

is located at 12.25 access days and

are still convex to the origin. At

other goods, but very slightly negative

This implies that the utility function in

The saddle point of the utility function

$-47348. Nevertheless, the level curves

the means of the data, the price
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elasticity of demand for access days is -0.125 and the income elasticity is

0.0682.

Figure 111.1 shows the effects on the fitted preference function of

ignoring travel costs in the estimation phase. As benchmarks, this figure

includes the “basic” indifference curve for a typical respondent (curve E) as

well as the indifference tune based on the CVM portion (curve A) and the

demand portion (curve D) of the unrestricted model. Here, however, attention

should be focused on the indifference curve for a model similar to the basic

model except that the available data on travel costs are ignored (curve A).

Even this very “thin” information about market demand pulls the parameter

estimates a long way away from the unrestricted CVM estimates depicted by

cunre A. Still, it is not clear in this application that the resulting (much

smaller) equivalent variation estimates will be superior to those generated by

the CVM portion of the unrestricted model.
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Jointly Estimated Model Ignoring
Travel Costs (i.e. M - O; Only Engel
Curves from Observed Demand Employed)

B, (z) 3.586
(1.342)

D2 (q) 0.1259
(13.19)

P3 (z2/2) 0.7711
(0.9538)

b. (zq) 0.005329
(2.058)

P, (q2/2) -0.008213
(-22.46)

u 16.12
(81.85)

P 0.2343
(9.076)

log L -15679.17
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APPENDIX IV

An Ad Hoc Reweighing Scheme

Researchers who work with maximum likelihood estimation of models using

sample data are by now very familiar with reweighing procedures for scaling

the influence of different observations to allow the sample to more nearly

reflect the proportions of each types of person in the entire population.

Each observation in the sample is represented by one additive term in the log-

likelihood function, each bearing an implicit unit weight. Non-unit weights,

based on cross-tabulations performed on the population and on the sample, are

computed by calculating the ration of population proportions to sample

proportions in each cell of the cross-tabulation. Respondents who represent

undersampled groups in the population then have their contribution to

parameter estimation scaled up; oversampled respondents are given weights of

less than unity to decrease their influence on the final parameter estimates.

If CVM and TCM responses are treated ● s equally credible, the two terms

in the log-likelihood function in (7) corresponding to each type of

information each receive an implicit unit weight. Fortunately, the

dismantling of the joint normal error distribution into a conditional times a

marginal

entirely

It see,ms

error distribution leaves the error correlation, p, determined

within the discrete choice CVM portion of the likelihood function.

feasible, therefore, to “undo” the CVM and TCM terms in the

likelihood function and to scale the influence of each type of information in

determining the final parameter estimates.

If, for example, intuition suggests that the available CVM information

is only half as reliable as the “real” travel cost information, one might

change the weights on the CVM terms in the log-likelihood function to 2/3 and

those on the TCM demand terms to 4/3 (so that the weights still sum to two).
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This ratio of the weights will be designated as a “reliability” factor of .5

for the CVM information.

Given the maintained hypothesis of a quadratic

ask just how small the weight on the CVM information

utility function, one can

would have to become

before LR tests could just fail to reject the null hypothesis of parameter

equivalence for the two models. For equal unit weights (relative weight -

1.0) the results for the constrained and unconstrained models from Table II

are reproduced in Table IV.1. The second pair of columns in that table show

the consequences of decreasing the relative weight on the CVM information.

The relative reliability of the CVM information has been. decreased to 0.1 and

it is still possible to reject the hypothesis of common utility parameters.

It would therefore be quite a“stretch” to bring the utility implications of

the hypothetical CVM responses into line with observed demand behavior in this

particular application.

Still, the observed demand behavior might itself be misleading if the

true opportunity costs of access are poorly proxied by travel costs. It may

be inappropriate to expect the preferences implied by the two types of value

information to be identical. Likewise, the simple quadratic utility function

and homogeneous preferences may be too restrictive. Therefore, this finding

does not necessarily refute the equivalence of the true preferences underlying

these two types of responses.24

24 We have extendad the specification of the direct utility function to
include cubic terms in z and q. The data are not rich enough to support
separate parameters for the terms z2q or zq2. For the new “basic” model with
seven utility parameters, the maximized value of the log-likelihood function
is -15699.41. For the corresponding “unrestricted” model with separate CVM
and TCM parameters,convergence has not been attained after several hundred
iterations, but the log-likelihood function has been driven ● s high as
-15631.95, which is more than adequate to reject the restrictions.



Table IV.1

Joint Models with Separate CVM and TCM Parameters
(CVM and TCM equally credible; CVM discounted by weighting;

CVM discounted by disproportionate variances)

Parameter Rel.wt. - 1.0.a Rel.wt. - 0.1

Basic Unconstr. Basic Unconstr.
Model Mode 1 Model Model

j31 ( z )

P* (q)

/33 (z2/2)

P, (zq)

95 (q2/2)

3.909
(8.237)

1.276
(0.7457)

7.840
(6.385)

1.290
(0.2952)

39.43
(0.9207)

28.17
(2.573)

0.1399
(12.64)

0.1192
(19.55)

-0.1167
(-1.836)

1.498
(2.834)

-1.036
(-2.986)

1.494
(1.111)

0.002579
(2.006)

2.263
(2.147)

-0.001093
(-0.6008)

3.157
(0.8039)

-0.007060
(-13.47)

-983.3
(-0.4689)

-0.006837
(-22.80)

-502.3
(-1.311)

75.89
(5.756)

76.03
(7.703)

- -

1.0
.

1.0

-11.88
(-3.567)

-10.89
(-2.428)

-

-0.01749
(-0.9029)

-0.02129
(-1.495)

-0.04721
(-20.09)

-

-0.04739
(-14.97)

16.01
(81.98)

0.2315
(9.086)

15.97
(82.04)

15.98
(110.5)

0.2324
(4.030)

15.97
(110.6)

0.2495
(4.166)

0.2505
(9.749)

P

max Log L -15708.17 -15640.61b -25938.13 -25920.04c

a

b

c

“Rel. wt.” is the size of the weight on the hypothetical CVM
information relative to the weight on the observed demand behavior.

LR test for hypothesis of same ~ parameters for CVM and TCM utility
functions is 115.12 (when the 5% critical value of the X2 test
statistic is 9.49 and the 1% critical value is 13.28).

LR test for same L9 parameters is 36.1; still rejects hypothesis.



55

APPENDIX V

Implementing These Prototype Models in Other Applications

The illustration in this paper pertains to the valuation of a particular

recreational fishery. However, the joint model developed here is potentially

applicable to the valuation of any non-market good where consumers would have

to incur varying travel costs in order to engage in the process of

consumption. Individually, the travel cost method and the contingent

valuation methods each have shortcomings. Implications drawn from their

combined evidence ere likely to be much more robust.

While relatively good, the data used in this paper are still less then

ideal. The specific implications of the fitted models described here must be

judged accordingly. But this research has provided vital groundwork for

future studies.

First, the sampling procedures used in the gathering of the data

employed in this study were not ideal. In particular, rotating sites for the

survey were chosen, and virtually everyone who passed during the 10 a.m. to 5

p.m. period was interviewed. This precludes “outgoing” surveys for avid

anglers who may be out well before 10 a.m. , although many of these anglers

would be intercepted upon their return. A more serious problem is that we

cannot identify respondents who have been interviewed more than once. At

best, we have a reasonable sample of fishing trips, not anglers, so the

estimated preferences may be biased towards those of frequent anglers. This

problem cannot be

It would be

income (and other

helpful, but much

remedied with this data set.

highly desirable to have individual-specific measures of

sociodemographic variables). Census zip code means are

information is lost in using group averages as proxies for
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the true variables. If at all possible, the survey instrument should elicit

these data for each respondent.

The contingent valuation question should be

clear whether the hypothesized change is intended

income (as modeled in the body of this paper), or

(as explored in Appendix I).

theoretic formulation of the

ensure that the CVM question

This information is

phrased so as to make it

to be a lump-sum change in

a change in relative prices

vital to the utility-

estimating model,and great care must be taken to

is completely unambiguous.

The present survey asks about travel costs for the current fishing day.

What the model requires is typical costs for a typical fishing trip, or better

yet, enough information to construct the actual schedule of opportunity costs

as they increase with number of access days. This would make the travel cost

portion of the model more reliable. The current model also must presume that

individuals fish most of the time at the same location. Much more

sophisticated analyses will be required in order to introduce site choice

modeling into this framework.25

Respondents could be asked specifically about how sure they are

concerning their hypothetical responses to the CVM and travel cost questions.

This information could be incorporated into the weighting scheme for the auto-

validation of the CVM data.

Optton and existence values cannot be captured with the current data

set. Selection problems in the assessment of recreation demand have received

considerable attention recently (e.g. Smith, 1988). A random sample of

households in the target population could be contracted by telephone. If they

do not currently consume access days, quantity demanded will simply be zero.

2S At present, site choice modeling has been pursued in a largely atheoretic
multiple discrete choice framework. Blending the two approaches might have to
wait for further computer software and hardware innovations.
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Travel costs to relevant sites could still be elicited and appropriate CVM 

questions could be formulated to allow extension of this modeling framework to

non-use demands.


